Poor Power Quality Can Plague Process Industry Drives

Power Quality is on the Decline -- Fortunately Variable Frequency Drive Technologies are Available to Help Proceesors Cope

2 of 2 1 | 2 > View on one page

Under these conditions, explains Glickman, an AC drive often will trip on over-current, because the line current was too high; or, on under-voltage, because the DC bus dropped below some threshold.

“Similar effects will be seen when single-phase loads are unevenly distributed on a processor’s 3-phase power system.” Says Glickman. “The solution is to balance these loads more evenly across all three phases, or install an AC line reactor at the AC drive that is experiencing problems. The reactor should be sized to carry the drive’s full load current, and it should have an impedance rating anywhere from 2% to 6%,” he says. According to Glickman and Bernhardt, single-phase input operation of drives for a short duration is usually not a concern. But, continuous single-phase input operation will require that the drive be de-rated or sized by two or more times the actual power requirement because single-phase current is 1.87 times three phase current for the same power.

Line Impedance
The effect of utility impedance on the operation of a drive is a function of how stiff or soft the line is. “Nominally (i.e. %Z = 1%), the drive short circuit current is set at 100 times the drive rating,” says Bernhardt. “On a soft line (i.e. %Z > 10%), the short circuit rating is 10 times the drive’s rating; and on a stiff line (i.e. %Z < 0.1%), the short circuit rating is 1,000 times the drive’s rating (limited only by fault interrupting limits).”

Loading variations within the user facility are a second source for impedance issues say the two. When facility loads are energized, especially loads that have high inrush currents, excessive impedance will cause voltage sags and the effect on a drive is the same as discussed earlier.

Bernhardt and Glickman say there are a number of design techniques system designers can employ to minimize the deregulating effect of line impedance. “It is generally more productive to make impedance improvements, where possible, in the highest impedance components, such as transformers and long conductor runs,” says Glickiman. Some recommended practices include:





  • Avoid using multiple transformers to achieve proper load voltage,
  • Select low-impedance or oversized transformers,
  • Design long cable runs at the higher voltages, and
  • Increase conductor size above the minimum ampacity required by thermal design.

Voltage Transients
Capacitor switching is a common event on most utility systems note Glickman and Bernhardt. Shunt capacitors are applied on transmission systems, distribution feeders and at substations. These devices adjust the line voltage for differences between daytime and night time loading and may be switched on a daily basis. Energizing these capacitors causes a transient voltage between the capacitor and the power system inductance.

Voltage transients also are caused by line switching of heavy loads, such as large motors, without the use of soft switching, switching power factor correction capacitors, welding equipment, clearing line short circuit faults and lightning strikes. “Voltage transients are sudden, one-shot, sub-cycle voltage disturbances of tens to hundreds of microseconds in duration and could be over 1KV,” says Glickman.

Voltage Swell or Over-Voltage
Voltage-source PWM drives use a DC capacitor to smooth the rectified line voltage and act as an energy source for the inverter section of the drive, explain Bernahrdt and Glickman. Line voltage to the drive is monitored at the DC capacitor or bus. Over-voltage trip points are normally set at 130-135% of nominal rated voltage. An over-voltage trip inhibits drive operation, but does not remove the drive from the line. “By regulating the motor voltage via PWM modulation,” says Bernhardt, “the automatic restart function of the drive can be programmed to recover from an over-voltage trip, once the normal line condition is restored.”

Ground Placement
Drive power circuits are usually floating with respect to ground except for MOVs and EMI/RFI filters, say Glickman and Bernahrdt. They explain that ground reference can be at any potential at, or within the line voltages. EMI filters should only be used on symmetrical grounded neutral systems. “Much of the published literature related to power quality suggests that a high percentage of power quality problems are, in fact, related to wiring issues within the user’s facility,” notes Glickman, “with specific reference to grounding and bonding.”

AC Drives and Power Conditioning
Both Glickman and Bernhardt note that power line disturbances cannot be avoided totally. Different solutions exist to mitigate voltage, current and frequency deviations that are produced by the utility system. A number of low-voltage devices exist that have the capability to deal with a range of power quality conditions either fully or partially, but according to them AC drives, in their own right, should be viewed as a power conditioning technology. The degree to which the technology can correct for power quality conditions they explain, is largely a function of the design of the drive and the ratings of its semiconductors.

The interview concluded with Berhanrdt and Glickman offering a set of recommended protective-functions and ratings that, if followed, will likely provide processors with improved drive performance when power quality conditions are present at the drive input. It is recommended that users specify

  • Phase-to-phase and phase-to-ground line voltage transient protection with a broad voltage operating range. Glickman and Bernhardt recommend a range from 65-130% of nominal voltage.
  • Power-loss ride through, utilizing kinetic energy recovered from the rotating mass.
  • Ground testing at the factory to 2,500 V rms power circuit to ground with MOVs disconnected.

Recommended Ratings
Specify drive components with high voltage stress ratings:
1600 PIV rectifier diodes; and
Line-to-line and line-to-ground Metal Oxide Varistor transient protection rated 120 to 370 joules, up to 8000 amp max, providing up to 160,000 watt absorption at the rectifier voltage rating for 1 to 2 milliseconds.

Glickman and Bernhardt point out that as  MOVs have only a 1-2-watt, line-to-line power rating, care must be taken to avoid subjecting the MOVs to a continuous string of transients.

“An effective way to eliminate nuisance tripping is to isolate the drive from the power system with series inductors (chokes or line reactors),” says Glickman. “The additional series inductance of the choke or line reactor reduces the magnitude of the voltage transient. ABB drives have 3% line reactors on drives > 60HP and equivalent 3% to 5% bus reactors on drives 60 hp and below,” adds Bernhardt.

For processors to get the best out of their drives Bernhardt and Glickman recommend the following specifying tips:

  • Specify control power operation down to an equivalent line voltage of 95VAC.
  • Specify rated power without speed reduction to the load for up to 15 ms before tripping occurs during brownouts and full power outages.
  • Specify current ratings at 110% for 1 min. (out of 10); 180% for 2 sec. (out of every 60); and 350% instantaneous over-current trip.
  • Specify frequency variation with a 47-63 hertz tolerable range and rate of change > 10 hz/sec.
2 of 2 1 | 2 > View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments