Capitalizing on IT and Manufacturing Convergence

Can’t we all just get along? If you’re talking about plant floor engineers and corporate IT personnel, the answer often is a resounding “no.”

Share Print Related RSS

However, the usual economic forces have been flowing over this resistant organizational rock, and there’s evidence that it too is beginning to wear down. However, this doesn’t mean it’s a pain-free process.

To help control engineers, automation professionals and end-user manufacturers cooperate more effectively with their IT colleagues, Rockwell Automation and a panel of invited experts presented “Capitalizing on the Convergence Between IT and Manufacturing” during its Manufacturing Perspectives media day on Nov. 13 before the opening of this week’s Automation Fair 2007 in Chicago.

The panel was moderated by Mike Jackson, Rockwell Automation’s vice president and CIO, and the panelists included Bruce Anderson, vice president for global business services and supply chain management at IBM; Chris Colyer, worldwide industry director of manufacturing operation strategy at Microsoft; Steve Miraglia, vice president of biotechnology technology and engineering at Wyeth; and Chet Namboodri, global director of manufacturing industry solutions at Cisco.

“As you look to improve operational performance, you can break the resulting pain into four basic areas: people, assets, processes, and information and events.” Microsoft's Chris Colyer participated in a panel discussion on the potential benefits of IT and manufacturing convergence.
Going Green

First at bat, Anderson presented “The Evolving Green Challenge for Manufacturing,” and reported that much of IBM’s $91 billion size in 2006 comes from manufacturing, such as its East Fishkill campus, which automates chip manufacturing with a network of sensors connected by 600 miles of network cable. To better manage its compliance and regulation, legacy system scalability, warranty risk, faster design cycles, volatile demand signals, ERP maturity, and reduced computing costs, Anderson said IBM last year began exploring ways to improve its manufacturing automation to reduce time to market and total cost of ownership, and improve asset performance and lessen business risk.

Chief among the methods that IBM is seeking to incorporate in its manufacturing automation practices is “green” or “sustainable” manufacturing, which it defines as the creation of manufactured products that use processes that are nonpolluting, conserve energy and natural resources, are economically sound, and safe for employees, communities and consumers.

Anderson explained that green manufacturing is driven by compliance and regulation, increasing energy/raw material/waste disposal costs, a strategic view of environmental costs, environmentally aware customers, product strategy and consumers making more moral purchases.

“IBM’s outlook on environmental leadership encompasses all business units within the company, including research, product design, manufacturing, procurement, logistics, distribution, health, medical, marketing and branding,” said Anderson. “The impact of green manufacturing requires us to rethink manufacturing fundamentals from simply adhering to government rules, heavily manual EH&S data collection for compliance, Six Sigma, and supply chain management to reducing carbon emissions and water consumption, automated environmental data collection and reporting for optimization, Green Sigma, and a sustainable value chain.”

Anderson added that IBM believes green manufacturing can be a self-funding proposition. Other drivers include rising utility costs, environmental regulations, overproduction, annual incremental cost reduction and process improvement, traceability and genealogy, quality issues, and company image. The benefits of green manufacturing include lower operational costs while reducing carbon footprint, reducing waste in unnecessary production costs, improved margins, avoiding carbon footprint penalties, and demonstrating that an organization is environmentally responsible.

“IBM estimates that, over the past eight years, annual savings from its focus on pollution prevention and design for the environment have exceeded environmental expenses by an average of two to one,” said Anderson. “Consequently, carbon management is a corporate-wide responsibility, and there are large opportunities in manufacturing, and production processes play a significant role in optimizing the carbon footprint.

“As a result, production at IBM is being managed to optimize its carbon footprint, staff is jointly engaging in real-time carbon usage production reporting, and truck balancing/loading effort are being supported. Green initiatives should be considered in all functional areas of the plant.”

Manufacturing Operations

Second up, Colyer delivered “Manufacturing Operations Convergence of IT and Operations,” and described what Microsoft sees as a series of emerging information architectures for global manufacturing. These begin with equipment control systems and machine, material and execution procedures, and move up through data collection, operator and batch control systems, and onward to manufacturing operations and control systems, and finally to business planning and logistics systems.

“As you look to improve operational performance, you can break the resulting pains into four basic areas: people, assets, processes, and information and events,” said Colyer. “So, what are the pains on the people side? Basically, there are too many systems, too many different software packages, pieces of data, and ways of looking at that data. And, there’s data overload, and no clear way to see what’s meaningful. There is no good role-based information. There’s just a big flow of information that each person has to decipher in his or her own way. If I can solve those issues, I can improve my productivity and reaction time.

“When it comes to assets, the problem is insufficient information at the plant. It’s tough to share information across plants. For example, if you have a maintenance issue at one plant and you’ve got the same setup at another plant, you can establish a strategy and prepare for visibility into the other plant, and achieve a reaction time measured in hours or days instead of weeks when that issue comes up again. So you can improve your utilization and lower your costs when you can aggregate and share performance information.

“On the business process side, plant floors are full of manual processes. And, every time you have a manual process, you have huge potential inefficiencies, largely because of human errors,” Colyer continued. “You also have a lot of rigidity because it’s hard to get people to change their manual or paper-based processes. For example, any process where compliance information has to go back and forth, or where there’s an approval process going back and forth, are great opportunities to automate. On the maintenance side, as soon as a valve goes off, if you can automate the process to kick off the requisition or purchase order and get it there soon, then you’ve saved that much more critical time. Finally, there are opportunities to automate across the supply chain with the entire purchase order process, or the reconciliation of deductions.

“Finally, on the information and events side, we’re talking about analytic capabilities. Manufacturing operations have these huge amounts of data and incredibly complex compliance issues. How do you get a handle on all that, and can you reduce the amount of human capital required to do so? Of course, software packages provide wonderful analytic tools to accomplish precisely this sort of integration and aggregation.”

Colyer concluded that the missing link in integrating enterprise applications with plant operations is plant operations impact on results inventory, processes, orders, resources, status, downtime, products, lab results and exceptions.

Biotech and Engineering

The third speaker, Miraglia reported that Wyeth has 50,000 employees at 37 facilities in 17 countries worldwide, and generated $20.4 billion in sales in 2006, including more than $1 billion in six pharmaceutical franchises.

To produce its products efficiently, Wyeth employs its four-layer “Wyeth S95—Shop Floor to Top Floor” architecture. These include discrete, continuous, and batch control on Level 1, Sensing and Manipulating the Process, and on Level 2, Monitoring, Supervisory, Control, and Automated Controls. Wyeth uses Rockwell Automation and other control vendors on these two levels. Manufacturing operations management, including Wyeth’s dispatching and detailed production, scheduling, and reliability assurance, are located on Level 3, Workflow, Recipe Control, Maintaining Records, and Optimizing. The company uses MES and Rockell PMX on Level 3. Finally, business planning and logistics, including plant production scheduling and operational management, are located on Level 4, Schedule Production, Material Use, Delivery, Shipping, and Inventory. Wyeth uses SAP R/3 on this level.

Despite its organizational architecture, Miraglia said that Wyeth’s managers, engineers and operator still must recheck, reconfirm, and ask themselves—“Who is responsible for what?” He reported that Wyeth’s corporate IT had an infrastructure focus, and is responsible for the firm’s wide area network (WAN), network cabling, Ethernet switches, routers and firewalls. Its site IS staff has a business application focus, and concentrates on computer PC, server operating systems, and office computer desktop applications. Wyeth’s site automation engineers concentrate on process systems, and manage process manufacturing systems, control systems, process data analysis, historians and process control.

“Success takes collaboration and teams working together,” said Miraglia. Some of Wyeth’s procedures for creating collaboration include:

  • Automation servers and workstations use approved and configured operating system images as defined by IS/IT infrastructure per requirements from automation engineering.
  • IT infrastructure supports all network layers throughout the S-95 levels including the control network layer, when using Ethernet.
  • Automation engineering approves all IS/IT requested or suggested changes to control system environment on Levels 1 and 2.
  • Virus protection is installed and active on all S-95 Level 1 and 2 manufacturing systems, but scans are manually scheduled for non-production hours, and specific automation folders are excluded.

Miraglia explained the benefits of automation and IT include the potential to deliver on a truly paperless manufacturing operation; systems that guide operators and prevent manufacturing deviations; an information platform supporting process characterization; and reducing lifecycle costs.

“Technology has and will continue to converge between IT and automation,” said Miraglia. “To sustain our success, we’ll continue to promote a collaborative environment, and establish clear responsibilities essential for IT and automation to properly support a fully integrated S95 system architecture.

Network Agility

Though manufacturers face customization, globalization, supply-chain synchronization, and regulatory challenges, Cisco’s Namboodri reported that the best manufacturers continue to compete by focusing on operational excellence. This consists of continuous quality and cost improvement, plus visibility, global collaboration and agility/flexibility.

“Achieving operational excellence requires solving the problems of isolated systems and applications,” said Namboodri. “For instance, business needs agility and responsiveness, a cost-effective strategy for business process improvements and enterprise-wide visibility. The obstacles to accomplishing this include too many layers, too many slowly obsolescing systems, costly and lengthy custom development and systems integration, and poor resource alignment.”

In addition, Namboodri added that EtherNet/IP is helping converge the business network and traditional plant-floor applications (such as controllers, HMIs, programming terminals and business systems) with real-time, plant-floor control applications (such as instruments, robots, drives, and I/O devices) and with commercial technologies (such as HTML, HTTP, XML, FTP, VoIP, Windows Linux, video, remote access, and wireless). “This convergence is needed to solve the overall application fragmentation problem, and create more business value,” said Nambodri. He added that some examples of business model innovations include:

  • Virtual support groups with SME located anywhere
  • Mobility of workers and mobile applications such as HMI
  • Supply-chain integration for real-time inventory visibility
  • Collaborative reviews of production data
  • Real-time information—regardless of location or device
  • Enabling predictive maintenance and remote support
  • Real-time data for quality improvements and Six Sigma
  • Shop-floor system integration with ERP for scheduling, product delivery confirmation, and quality tracking.
  • Integrated security—both physical and virtual

“The path to more business innovation moves through technology, network, organizational, and cultural convergence to these business model innovations,” concluded Namboodri, citing a quote from a 2007 ARC Advisory Group report: “Manufacturers need to reexamine their automation and operations management strategies and develop plans to breakdown the remaining barriers to information visibility, collaboration, and unified plant-wide control to achieve the next level of business performance.”

Share Print Reprints Permissions

What are your comments?

You cannot post comments until you have logged in. Login Here.

Comments

No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments