Loggers Keep Feeding Data-Hungry Users

Recorders and DAQs Have Survived the Advent of PCs, Adapted to Cooperate with Software-Based Historians and Continue to Serve in Applications Where Computers Can't Go

2 of 2 1 | 2 > View on one page

Any Path to Useful Data

In fact, it’s not computing and software’s power that’s fueling the DAQ resurgence; it’s actually the never-ending appetite for useful data.

“Users are realizing that information is king. They’re combining critical data from their manufacturing operations with information in their business systems, allowing them to find additional efficiencies in their overall operations. Properly designed data collection systems give the right information at the right time to the right decision makers,” says Brian Beaufeaux, of Industrial Automation Engineering, a CSIA-certified system integrator in Ham Lake, Minn. “Users need to set clear goals of what they’re trying to accomplish with the data they collect. Are they trying to do downtime/efficiency monitoring? Preventative maintenance? Improving mean time between failures (MTBF)? Inventory monitoring? Asset security? Lights out operations? Deciding this will help them focus on the right tools and technologies. There’s lots of data that’s already available in their process control systems. Smart MCCs can feed back pages of data from each bucket. So each situation needs to be evaluated individually. Various tools are a better fit depending on point count density and location, for example. One would use different methods and tools to collect data on their generator health status if it’s in a plant or located in remote lift-station applications.”

Shrinkage Spurs Data Relocation, Capabilities

Just as computers and DAQs become smaller, related A/D and signal conditioning components are shrinking too. As a result, users have to reevaluate whether to store data locally in the module or push it to long-term storage on a laptop PC or server, says Jim Campbell, president of Viewpoint Systems, a CSIA-certified system integrator in Rochester, N.Y. “Smaller computers also mean that users can push added intelligence down to recorders, which means they can log, not just physical parameters, but also simple and even complex events. For example, recorders can now log changes in nominal pressure over a long period, but they also can establish a dead band so the recorder will only log when readings move outside that band. Small, industrial 200 MHz Pentium PCs can be the logger in some cases and can be assigned to log more often when a change happens that the users want to monitor. This can help users secure only the data they want and save power at the same time.

Paper Persists

Though most users are moving from hardware and paper-based recorders to software, many food and pharmaceutical application still require paper records for documentation and regulatory compliance. “Many users want to get away from maintaining paper, but others still must have paper for critical data needed to insure safety. And some users don’t want to record and run their data through a digital system that might lose it,” says Goldberg. “Still, some federal rules, such as 21 CFR Part 11, are allowing greater use of electronic records and signatures, and so more users are investigating and implementing them. If designed properly, a digital DAQ system can be just as secure as paper.” 

Logger To-Do List

Campbell adds there a few important questions users must ask themselves to help select the DAQ system for their application. These include:

  • Is this a temporary monitoring situation, or is it a permanent installation?
  • Is it in a physically tight spot? How small is it and how hard is it to reach? If you can run signal wires to it, how much signal noise is there?
  • Are you logging or archiving data for historical purposes, or are you performing statistical process control?
  • Do you need to perform smart event detection for data compression, or do you need to be able to react to events?
  • What kind of delivery time and funding do you have available?

“Users can understand the business case for collecting data by asking, ‘What data will help us operate more efficiently?’ They can understand how mission-critical the data is by asking, ‘If we lose communication, do we need to store the data in the field device until we re-establish communication?’ ” adds Beaufeaux. “Next, they need to decide who needs the data, how often and in what format because there are different needs for the plant manager and the CEO.

“They also need to phase in the project because it will allow them to ‘eat the elephant one bite at a time,’ as well as take advantage of newer technologies that become available. For example, our group of companies installed a nationwide DAQ system for a railroad client that provides real-time usage and inventory monitoring of its diesel fuel storage facilities, which use more than 1.4 billion gallons of fuel per year, and we’re continuing to provide data-reliability services. Finally, most users budget for the initial capital expense, but they also need to plan for ongoing operational expenses associated with maintaining their DAQ system.”

Coming Attractions

“The cost per point to collect data will continue to decrease due to advances in Ethernet, mesh networking, RF, cellular and satellite technologies,” adds Beaufeaux. “As it becomes more cost-effective to collect data, it will become even more important to understand how to use it and not be overwhelmed. Being able to analyze the data and report the findings in a concise and timely manner to stakeholders will allow them to make better, more informed decisions that directly impact their bottom lines. There are new collaborative and score boarding software tools that help companies truly reap the value from their data.” 

Four Forces in Recorders and DAQs

Jim Campbell, president of Viewpoint Systems, a CSIA-certified system integrator in Rochester, N.Y., says there four main trends affecting recorders and DAQs in process control applications and markets over the past several years.

  • Unusual Accessibility—Increasing demand for data recording in hard-to-reach areas, where users just want to put small DAQ device. Users don’t necessarily need to connect these devices to an overall network and reportedly are often willing to come back, and extract data later.
  • Going Mobile—More mobile data loggers are being used on moving vehicles, such as freight trucks, autos on proving grounds and railroad cars. These reportedly are mainly black-box recorders in settings that can’t have a hard-wired connection. Many of these also are reporting stored data via wireless protocols.
  • MES and ERP Connections—Recorders are working more closely with historian capabilities in manufacturing execution systems (MES) and enterprise resource planning (ERP) software. Not only are DAQs retrieving values for MES and ERP systems, but also loggers are actually being made part of these systems.
  • Smaller and Less Costly—Form factors of many DAQs are getting smaller, and this is driving down their costs. Ethernet and USB-based features are growing in popularity, and this reducing the costs of some recorder components.
2 of 2 1 | 2 > View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments