Remote Wind Energy SCADA Control System

Like Old-Fashioned Farming, Tending a Wind Farm Is a 24/7/365 Job. At Iberdrola Renewables, the New SCADA System Is a Key "Farm Hand"

1 of 2 < 1 | 2 View on one page

By Harm Toren

At Iberdrola Renewables (, our National Control Center is professionally staffed 24/7/365, performing operations, energy management, scheduling and generation dispatch functions. This helps us to better manage risks and uncertainty while fulfilling energy requirements with sustainable and clean power. Originally called PPM Energy and part of Scottish Power, our company began operating in Oregon in 2001 with 12 employees. As of 2010, more than 850 workers throughout the United States maintain, develop, build and operate nearly 5000 megawatts of wind power and other power plants.

Our recent addition to the Iberdrola Renewables fleet is the National Control Center located in Portland, Ore., the nerve center of the Iberdrola Renewables generation portfolio. In a room that looks a little like NASA's Mission Control, our generation dispatchers and systems analysts oversee every turbine at every wind farm (and soon solar and biomass projects) throughout the country, around the clock. They monitor the performance and efficiency of every turbine. They keep an eye on approaching storms to warn technicians in the field to get to safety before harsh weather hits. They even have helped scientists conduct groundbreaking wildlife research. And they coordinate in real time with the nation's various transmission system operators to insure grid reliability to help keep the lights on.

The SCADA System

A vital element of our operation is our newly developed SCADA system, supplied by PcVue ( and integrated by the Iberdrola Renewables team. Among other things, each wind turbine has a control box containing a PLC, power converter, control boards and I/O device. Sensors for wind speed, wind direction, shaft rotation speed and numerous other factors collect and transfer data to the PLC. By detecting the wind's direction, the control system can use a motorized yaw gear to turn the entire wind turbine in the proper wind direction for maximum power generation. Our wind turbines are connected to a local area network (LAN) via a fiber-based, redundant ring connection. Although the turbines are designed to operate autonomously, they also are connected to a remote-control station running the control system that manages and collects data, adjusts turbine settings, and provides intelligent alarm, troubleshooting and reporting capabilities via our central data center and control facility in Portland.

The National Control Center connects via long-haul networks to the plant-based systems and ultimately to the individual turbines, substations, meteorological stations and avian radar surveillance systems. It provides visibility for our operators to manage the behavior of all the wind turbines and all the wind farms as a whole. By keeping a record of the activity on a time-interval basis, the SCADA allows our operators to determine what adjustments and corrective actions, if any, need to be taken. It records energy output, availability and error signals, and we are designing the ability to control (among other things) power factor, voltage and reactive power production, allowing for the management of wind farms' contributions to network voltage and frequency control. It also gives our operators the capability to manage power output based on real-time grid requirements.

The SCADA communicates with the turbines via a communications network that almost always uses optical fibers. We have multiple turbine types in our fleet and each turbine supplier provides its own control/HMI system. We have found that the major advantages of using PcVue as the main SCADA system is that it is turbine supplier-agnostic. It is not tied to any one PLC vendor, so that it can be free to provide data reporting and analysis formats irrespective of turbine type.

This was of particular importance to us because our wind farm operators use multiple turbine types and a myriad of various PLCs. In addition, our team really liked how PcVue was end-user friendly and easy to configure. Its ability to iconize animated mimics and use pop-up windows reduced the risk of overlaying crucial information and helped simplify the view for our team. The creation of templates for contents and behavior associated with each mimic and GUI (graphical user interface) animation, ensures consistency of the window display. We use multi-level access rights and menus associated with each user to ensure that navigation within the application is tailored to the needs and the permissions of each individual. This allows us to have a layer of security, traceability and control of users' actions.

Historically, when we had a small number of wind turbines transmitting into the grid, it was a relatively simple operations process. As renewable energy continues to contribute more and more to the grid, transmission and generation management become larger issues. Requirements are quite strict; thus, we have designed an integrated system with operator controls in order to manage the generation profile on a real-time basis. We are designing and building a scalable system to meet the next generation of renewable energy transformation. We are installing wind turbines to operate in harmony with other sources, such as nuclear power, solar, hydro and other energy in a netting arrangement to optimize performance.

In order to manage our growing business, we also have developed multi-point monitoring, fiber-optic networks and local systems on our wind farms in the United States that all tie into the National Control Center. We use a similar system in Toledo, Spain, called CORE (Centro de Operación de Energías Renovables, or Renewable Energies Operation Center). In each case, there is a central facility where the SCADA system is able to remotely access facilities throughout the country and access alarm and event conditions.

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


  • <p>I would be interested to hear more about how Iberdrola monitors efficiency. I have encounted very few wind farm scada systems which perform much meaningful analysis. There are some good papers on the use of wind farm scada data but very few wind farmers seem to employ them. gives some good examples of things to look out for in scada data which require varying levels of analysis to discover.</p>


RSS feed for comments on this page | RSS feed for all comments