Wireless Comes of Age

Even in the Notoriously Conservative Process Industries, Wireless Has Moved Past the Early Adopter Stage and Into Day-to-Day Operations

By Nancy Bartels

2 of 4 1 | 2 | 3 | 4 View on one page

© 2012 Rasmusson & Willey LLC It looks like wireless is finally meeting Caro's criteria of measurable user benefit demonstrated in several plant locations. 

Remote Access

Getting necessary and, if not necessary, certainly useful data from remote areas of operation at a reasonable cost is a big driver for implementing wireless.

At specialty chemicals manufacturer Lubrizol's Deer Park, Texas, facility, wireless monitoring is in place in the tank farm. Keith Simpson, Lubrizol's I & E controls manager at Deer Park, explains: "The Deer Park tank farm is hundreds of tanks spread around the manufacturing facility, and some are across the road and in outlying areas. We're installing wireless transmitters for tank pressures and temperatures."

Cost was a big factor in making wireless an attractive option, and not only because the cost of running all those wires was eliminated. "People frequently forget that not only do you not have to pay for the wires, conduit, etc, but also, you don't have to do the engineering design. Wireless eliminates that cost as well," Simpson explains. "We had to decide where to put the wireless gateway and the switch, but that's what the engineering was restricted to."

Lubrizol went with the WirelessHART protocol for the same reason that many end users choose one protocol over another. "Most of our wired apps are HART," says Simpson.

Furthermore, Lubrizol uses Emerson's DeltaV automation system and its AMS asset management suite, both of which integrate seamlessly with the HART protocol. That AMS integration was another selling point for going wireless. "You can capture all that data and get it in AMS if you're using wireless," Simpson says.

Lundbeck Pharmaceuticals Italy, a producer of active pharmaceutical ingredients and cGMP intermediates in Padova (Padua), overcame its remote facilities problem in a similar fashion. The company needed to monitor and record groundwater levels at 10 monitoring wells around the facility. 

According to Nicola Ribon, a project engineer at Lundbeck, the company began by monitoring three wells using a wired solution, but when the project expanded, and those wells on the periphery of the plant were included, wireless became the answer. "Because of the distances between those wells and the recorder, we chose a wireless solution. Moreover, a couple of wells are outside the grounds of the facility in the middle of the street, so it was impossible to reach them with cables."

Timing was another factor in the decision. "We needed to use the system for only a short period, probably a year," explains Ribon. "After that we can reuse the wireless system to collect and record other kinds of data. That's not possible with cables; you need to dismantle them."

The wireless technology is from Endress+Hauser and is based on the WirelessHART protocol. "Basically [we chose these products] because we just used Endress + Hauser level transmitters for the first cabled application. We know the performances of these transmitters, and we choose to maintain the some partnership with E+H also for wireless application," Ribon explains.

Oil and gas giant Petronas, based in Kuala Lumpur, Malaysia, is running a pilot project at its granular urea plant in Gurun, Kedah province. According to A. Aziz B. Ahmad, project engineer, "We are using wireless applications to monitor pressure and tank levels. We're using it to bring local information back to the control rooms."

As with many wireless converts, cabling plays a big role in the decision to cut the wires. "We run out of spare cable," Ahmad says simply. He adds that knowing that wireless technology was going to be used only for monitoring and not for control was also a factor in making the move. Although wireless for control is certainly a possibility in the future, for now, no one is ready to take that leap.

Ahmad says that his team had the choice of going with either the WirelessHART or the ISA 100.11a protocol, and they chose ISA 100, or more accurately, they chose technology from Yokogawa, which uses the ISA 100.11a protocol.  The standards issue didn't really arise, says Ahmad. "Yokogawa was the first to offer their transmitter," he says.

The company also offered significant backup and support.  "Yokogawa played a critical role in getting us comfortable with the standard and the wireless field technologies. They have conducted site surveys, given the appropriate support and even imparted valuable knowledge to our engineers during installation phase," says Ahmed.

So far, Petronas' experience has been a good one. In fact, says Ahmad, "We are satisfied with the progression and the proposed solution this far and are seeing smooth integration between Yokogawa's wireless products and our existing system. We will explore the expansion of wireless in our operation, as we are seeing very positive throughput with the wireless solution installed in our plant. In fact we have added another wireless installation for tank level measurement and upgraded our PRM system to enjoy more asset management benefits."

Other Uses

Wireless isn't just about remote connectivity. Another focus is on diagnostics. Over the last year or so, the MOL Plc Danube Refinery in Százhalombatta, Hungary, has been developing a strategy for expanding the use of wireless in its operations with a focus on two areas, monitoring and diagnostics, says Gábor Bereznai, head of instrumentation, control and electrical at the refinery.

Lubrizol's Deer Park

2 of 4 1 | 2 | 3 | 4 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments