Creative Computing for Control

PC-Based Control Is Taking Over in a Variety of New and Upcoming Process Industry Applications. Here Are Some of the Most Innovative Solutions

By Jim Montague

Share Print Related RSS
Page 1 of 2 « Prev 1 | 2 View on one page

Just in case you haven't checked recently, the old barrier between controllers and PCs is gone, and microprocessors and software are continuing to show up everywhere in process control and automation. Sure, programmable logic controllers (PLCs) and similar components have long performed data processing tasks, but basic PC hardware, architectures and logic are taking over more and more applications.

For instance, to measure and meter the new, €10-billion Nord Stream pipeline that provides a natural gas link between Germany and Russia, Wingas GmbH & Co. in Kassel, Germany, has been working with RMG by Honeywell to install ultrasonic gas meters, flow computers and gas chromatograph systems on the pipeline's two, parallel, 1200-km legs (Figure 1).

Wingas is a joint venture of Wintershall Holding AG, Germany's largest crude oil and natural gas producer, and Russia's OAO Gazprom. Its existing 2000-km pipeline network connects gas reserves in Siberia and the North Sea to markets in Western Europe. In Germany, two pipelines called Ostsee-Pipeline–Anbindungs-Leitung (OPAL) and Nordeuropäische Erdgasleitung (NEL) will take natural gas from Nord Stream and feed it into Europe's existing natural gas grid. When complete, the OPAL and NEL pipelines will be more than 400 km long with a diameter of 1.4 m each.

"About 55 billion cubic meters of natural gas will flow through the meters every year, providing safe, stable energy to the European market, so the quality of the readings can't be compromised," says Klaus Haussmann, project manager at Wingas Transport GmbH. Consequently, RMG helped implement the following equipment at Nord Stream:

  • ERZ 2000 flow computers, which consist of a series of microcomputers for flow correction that provide parallel calculation of compressibility according to established methods. When carrying out corrections using density and standard density, the speed of sound effects is measured and calculated.
  • PGC 9000 VC process gas chromatographs, which analyze 11 components and calculate calorific values, standard density, Wobbe index and density ratios of natural gases on the basis of standards and weight legislation.
  • USZ 08 ultrasonic gas flowmeters, which meter custody transfers by measuring flow velocities of the gas and then calculate flow rates at measurement conditions. 

More and Better Measurement

Likewise on the measurement front, Lime Instruments LLC in Houston, Texas, is building an oil well fracture pump monitoring system using LabView software and CompactRIO (reconfigurable I/O) and Single-BoardRIO hardware from National Instruments.

"Each fracturing unit has a high-horsepower diesel engine and transmission mated to a triplex or quintaplex pump," says Robert Stewart, Lime's CEO. "Both the engine and the transmission are equipped with an electronic interface that monitors critical functions and provides diagnostic information as the unit is running. The engine and transmission output the data they monitor via SAE J1939 controller area network (CAN) communication protocol. Presently, pumps in this industry don't have more than a couple of discrete sensors to monitor critical operating parameters, such as discharge pressure, RPM, and lube oil pressure and temperature. Each of these parameters is measured with one sensor and a signal cable that goes back to the main control console.

"The goal of our product is to monitor these functions, as well as several others, and transmit that data back to the main control console via the same SAE J1939 CAN protocol. Our system needs to look for data characteristics outside the normal operating envelope and failure conditions. With this real-time information, operators can determine if they should discontinue operation or continue based on real performance indications from the pump. Ultimately, this system should reduce the number of pump failures, as well as overall pump maintenance costs."