Blogs

How can we provide Mechanical and Process Engineering Regulatory Control Guidance Tips (Part 4)?

In part 4 we start a list of best practices. The guidance is the result of decades of experience in plants by industry experts Michel Ruel and Jacques Smuts.  The practices are insightful and apply to almost every control loop. The series will conclude next week with my offering.

PID Tuning and Features Simplified to Meet Process Objectives

PID tuning and features determine process performance but the relationship is not well understood leading to a divergence of opinions and a multitude of rules. This seminar unifies major tuning rules to a simpler set that when used with key PID options can achieve a diverse spectrum of process objectives.

How can we provide Mechanical and Process Engineering Regulatory Control Guidance Tips (Part 3)?

In part 3 we start a list of the essential concepts needed to understand what is most important and what to do to help make a loop meet process objectives. The concepts are presented in the broadest possible terms to provide a perspective that can be used in a wide spectrum...

How can we provide Mechanical and Process Engineering Regulatory Control Guidance Tips (Part 2)?

In part 2 we evaluate a misleading statement about the amount of derivative to use and provide some better guidance. We take a look at how mechanical and process design and operating conditions affect the need for derivative action.

How can we provide Mechanical and Process Engineering Regulatory Control Guidance Tips (Part 1)?

The mechanical, piping, and process design determines the steady state and integrating process gains and the process deadtimes and lags. The process engineer usually sets the project basis for the control system in the development of the Process Flow Diagram (PFD) and in the writing of the operating and process descriptions.

Where Do Process Dynamics Come From?

Do you lie awake at night wondering what the source of process dynamics is? Do you wonder why temperature and composition controllers tend to oscillate at low production rates and low levels? Are you perplexed why some controllers need a lambda factor of 2 and others need a lambda factor...