Voices: Hebert

Measuring Viscosity With Coriolis Flowmeters

It Can Be Deduced From the Excitation Coil Current

By Dan Hebert

The Earth rotates, so any movement in the Northern hemisphere is diverted to the right and any movement in the Southern hemisphere is bent to the left. This apparent bending force is known as the Coriolis force, and is named after the French mathematician Gustave Gaspard Coriolis (1792-1843).

Since the 1970s, instrument designers have used the principle of Coriolis force to measure mass flow and density with Coriolis flowmeters. Most of these meters also include temperature measurement and are thus true multivariable instruments.

Read Also: Coriolis for the Masses

A traditional method for measuring viscosity with mass flowmeters is to add a differential pressure (DP) meter. Viscosity is the measure of a fluid's internal or intermolecular resistance to shear stress. Certain types of fluids offer greater resistance to velocity than others. Tar or syrup cannot be poured easily and have high viscosities. Water or gasoline are "thinner" and have much lower viscosities.

A DP meter can be installed around the mass flowmeter with taps upstream and downstream. Viscosity is measured by determining the pressure drop through the mass flowmeter. The viscosity of the flowing medium is directly proportional to the ratio of pressure drop and volumetric flow rate. This calculation of viscosity is based on the Hagen-Poiseuille equation and is expressed as absolute viscosity.

Viscosity measurements with Coriolis and DP have some limitations in addition to the obvious cost of two separate meters. The Hagen-Poiseuille equation is only valid for laminar flows with a Reynolds number less than 2,000. This often forces the use of larger and more expensive meters to minimize flow velocity. The flow profile must be uniform throughout the DP measurement section of the process, and the Hagen-Poiseuille equation is also only theoretically valid for Newtonian fluids.

These limitations have spurred research into methods of measuring viscosity directly with a Coriolis meter. Research at Endress+Hauser has resulted in the recent introduction of direct viscosity measurement in the company's Promass 83 I line.

Coriolis flowmeters measure the rotational force exerted by fluids flowing through an oscillating measurement tube. Measurement of these forces is used to calculate mass flow and density. Endress+Hauser uses the torsional movement of the single straight measuring tube to additionally measure the viscosity of the fluid.

Read Also: How Do Coriolis Flowmeters Work?

Promass Coriolis flowmeters use a patented torsion mode balance system for optimum balance and isolation from external influences. A pendulum is attached to the middle of the oscillating measuring tube to provide a balancing force. This pendulum oscillates counterphase to the tube, thus compensating for the momentum of the measuring tube.

Due to the rotational motion of the tube, the fluid is forced to a rotational motion. Depending on the fluid's viscosity, different velocity profiles of the fluid are generated. The gradient of the velocity profile induces shear forces in the fluid, which dampen the oscillation of the measuring tube and can be measured via the excitation current necessary to maintain tube oscillation. The excitation current can then be used to calculate the viscosity of the fluid.

The accuracy of viscosity measured with this patented method depends on whether the fluid is Newtonian or non-Newtonian. The viscosity of Newtonian fluids is independent of shear rate. Water is a Newtonian fluid, so its viscosity is not affected by shear rate. Stated differently, water will pour out of a container at the same rate if the water is still or if the water is being stirred.

The viscosity of Newtonian fluids can be measured with a high rate of repeatability and reasonable accuracy. "The total accuracy equals ±5% of reading and the repeatability is 0.5% of reading," according to Stefan Grotzer, flow product manager, Endress+Hauser.

If the viscosity changes with shear rate, the fluid is non-Newtonian. The effect of shear rate depends on the type of fluid--some non-Newtonian fluids have a reduced viscosity when shear rate is high, some the opposite effect (increased viscosity with higher shear rate). Ketchup is a good example of the former: it is usually necessary to shake the ketchup bottle to induce flow. This shaking or shearing reduces the ketchup's viscosity and promotes flow.

The accuracy of viscosity measurements for non-Newtonian fluids is adversely affected by shear rates generated by the Coriolis meter and by other elements. However, Coriolis meters can measure the viscosity of non-Newtonian fluids with good repeatability.

Coriolis meter viscosity measurement of non-Newtonian fluids is typically used where the target is a repeatable measurement and where continuous correlation to a lab measurement is not required. A change in viscosity can be an indication of a process problem, or can indicate the product is outside the acceptable limits of viscosity.

More from this voice

Title

Before You Buy Your Next IPC, Read This

An Industrial PC (IPC) Can Perform Just as Well as a DCS or a PLC, and Thin Clients May Offer Additional Benefits

07/15/2013

Process Automation: Collaboration at Ergon Refining

Software Technology Makes It Easy to Share Information, Documents and Files During a Project

07/15/2013

Automation Professionals Work From Home

There Are No Reasons One Could Not Work On Project Files Anywhere

07/15/2013

How Industry Professionals Pull Together in Process Automation Projects

Advances in Functionality Coupled with Dramatic Price Cuts are Fueling the Use of Collaboration Tools for Process Automation Projects

07/15/2013

Real-Time Optimization with MPC

Users Can Combine the Traditional Black-Box Models with Specific Process Knowledge to Produce a Gray-Box Model That Will Produce More Accurate Predictions

09/12/2013

Cloud-Based Asset Management

Suppliers Can Use the Cloud to Provide Remote Access to End Users, and to Analyze Data for Asset Management and Other Purposes

11/18/2013

What's Hiding in the Cloud?

A Factory in the Cloud Sounds Like Science Fiction, but We're Heading There, at Least for Some Applications. Here's How to Clear Away the Mist to Get the Most from This Technology

11/18/2013

Process Apps in the Cloud

Using High-Fidelity Modeling and Novel Sensors, Real-Time Control and Optimization Can Achieve Big Reductions in Energy Consumption

11/18/2013

Creative Ways to Cut Costs in Hazardous Areas

For Remote Operator Interface Applications in Hazardous Environments, a Thin Client is the Most Economical Solution

01/15/2014

Calibration Can Be Condition-Based

Calibrating Industrial Devices Only as Needed Is the Better Method, and That Requires Automating the Calibration Process

03/14/2014

Four Ways to Collect Process Plant Data

PCs with HMI Software Can Work As Plant's Sole Data Collection Tool

06/16/2014

Predicting Equipment Failures in the Process Plant

Now You Have Option of Using Your Existing Process Historian as the Front End for a Vibration Monitoring System

07/17/2014

Improve Access to Plant Information

There Are Four Stages of Content Management Maturity: Content Under Control, Access Anywhere, Managing Change and Integration With the Business

09/18/2014