Voices: Lipták

The fuel cell: A new process to control

The fuel cell is like a battery, except that it never needs recharging because the heat and electricity produced by it are made from the inexhaustible and clean sources of water and air.

Bela LiptakBy Béla Lipták, PE, CONTROL Columnist

AS PROCESS control and the world at large forge ahead in this new millennium, we face new challenges. We all know that the reign of the internal combustion engine should end, and that we should start harnessing the chemical energy of hydrogen to generate the heat and electricity we need without causing pollution.

In order to do that, we have to learn how to control the fuel cell. The fuel cell is like a battery, except that it never needs recharging because the heat and electricity produced by it are made from the inexhaustible and clean sources of water and air.

The fuel cell consists of an electrolyte sandwiched between two electrodes. The hydrogen fuel can be obtained from a hydrocarbon "reformer" or from hydrogen directly. If it is from a reformer, the initial fuel can be a hydrocarbon such as ethane or methane. These hydrocarbons can be obtained from renewable agricultural sources, such as corn, or from the abundant coal reserves that the United States possesses. We could supply all our energy needs for 200-400 years from coal.

In an earlier column I reported on a fluidized bed-type coal-gasification technology, which I helped develop a quarter century ago as a synthetic fuel source [CONTROL—March ’02, p14]. At its heart, it reduced the residence time of the batch-type Lurgi process from two hours to a few seconds. Today, the project is gathering dust, because it does not serve the financial interests of the oil companies.

Eventually, the reformer will be dropped and hydrogen will be made directly from sea water by the use of solar energy.  But no matter where the hydrogen comes from, it enters the fuel cell at the anode, where, with the help of a catalyst, it splits into an electron and a positive hydrogen ion (a proton). This proton travels to the cathode through the electrolyte, while the electron is available for use. It can be used to make electricity or can be returned to the cathode, where it is reunited with the hydrogen ion and oxygen to form clean water, which is exhausted.

Over the last century, we have learned how to control the internal combustion engine. Now we have to meet the challenge of not only controlling the electrolytic process in the fuel cell, but also the generation, transportation, storage, and distribution of liquid hydrogen. These are topics I plan to discuss in future columns.

The tank-to-wheel efficiency of the present internal combustion engine is 16%, while that of the fuel cell is three times that, or about 48%. Today's internal combustion engines are responsible for 65% of the oil consumption and 78% of the carbon dioxide generation in the United States. Every gallon of gasoline used for transportation releases 25 lb. of carbon dioxide, which is one of the greenhouse gases responsible for global warming. In addition, oil, the fuel supply of the internal combustion engine, is exhaustible and is a cause of international tensions.

FIGURE 1: HYDROGEN IN, POWER OUT

Hydrogen fuel enters the fuel cell, where an anode with a catalyst removes the electron to create electricity. The proton is combined with oxygen from the air for an exhaust product of water.

In contrast, the use of fuel cells would reduce, if not eliminate, international tensions. It would also allow us to convert to not only an inexhaustible energy source but also to a sustainable life style, which does not cause pollution. On top of that, because fuel cell vehicles operate with electric motors, vehicle noise and vibration would be reduced while eliminating the need for oil changes or spark plug replacements.

Fuel Cell Designs
Several fuel cell designs have evolved to date. Each requires a different control package. They are:

  • Phosphoric Acid Fuel Cell -- Phosphoric acid electrolyte, platinum catalyst; can use hydrocarbon fuel. It is suited for stationary applications and generates both electricity and steam. There are 200 units in operation, in sizes ranging from 200 kW to 1 MW.
  • Proton Exchange Membrane -- Solid organic polymer electrolyte, platinum catalyst; requires hydrogen fuel. It is suited for automobiles.
  • Molten Carbonate Fuel Cell -- Carbonate electrolyte, conventional metal catalyst; can use coal gas or natural gas fuel. It’s best suited for 10kW to 2 MW power plants.
  • Solid Oxide Fuel Cell -- Solid zirconium oxide electrolyte. Suitable for large-scale central electric power plants.
  • Alkaline-Electrolyte -- An aqueous solution of alkaline potassium hydroxide, which is soaked in a matrix. It’s been used by NASA on space missions to generate both electricity and water.
  • Direct Methanol Fuel Cell -- Polymer membrane electrolyte, no fuel reformer is needed because the catalyst draws the hydrogen directly from the liquid methanol. Usable for small power users as cellular phones or laptops.
  • Regenerative Fuel Cell -- Solar-powered electrolyser separates water into hydrogen and oxygen to produce heat, electricity and water. It is regenerative, because the water is recirculated to make more heat and electricity.
  • Zinc-Air Fuel Cell -- Electricity is produced as zinc and oxygen are mixed in the presence of an electrolyte to make zinc oxide. Can be a substitute for batteries.
  • Protonic Ceramic Fuel Cell -- Eliminates the need for fuel reformers by using a ceramic electrolyte, which electrochemically oxidizes fossil fuels.   

Many fuel cells are already in use. In the Space Shuttle, both electricity and water are provided by fuel cells. In 1993, the first fuel cell-powered bus was introduced. The prototype of a fuel cell-powered car was introduced in 1997 by Daimler Benz and Toyota. In 1999, Daimler Chrysler unveiled Necar 4, a liquid hydrogen vehicle having a top speed of 90 mph and a 280-mi. tank capacity.

It is up to all of us to speed this progress, so that hydrogen-based technology can mature before we run out of oil or before its shortage causes a tragedy.

After a century or so of transition, during which we've mixed agricultural and coal-gas based fuels, we should reach the final goal, which is a completely solar-based economy. This economy will probably depend on man-made solar islands distributed around the equator and used to collect the solar energy needed to make liquid hydrogen from sea water and thereby supply the total energy needs of the globe by a completely clean and inexhaustible energy source.


  About the Author
Béla Lipták, PE, is a process control consultant and editor of the Instrument Engineers' Handook, and is seeking co-authors for the forthcoming edition of that multi-volume work. He can be reached at liptakbela@aol.com.

More from this voice

Title

The fuel cell: A new process to control

The fuel cell is like a battery, except that it never needs recharging because the heat and electricity produced by it are made from the inexhaustible and clean sources of water and air.

09/20/2002

The next generation of smarter valves

In the next decade, much improvement and change is expected in the design of smart and self-diagnosing control valves, with potential advantages outweighing the required investment of time and money.

05/10/2005

The next generation of smarter valves – Part 2

Much improvement and change is expected in the design of smart and self-diagnosing control valves, with potential advantages outweighing the required investment of time and money.

07/10/2005

Getting Loopy with Control Loops

This month's edition of Ask The Experts focuses in on manual control loops and offers guidance on which PID control mode should be used when, and what the range of tuning settings should be.

07/20/2005

Can an automation engineer control the economy?

In this month's installment of his Lessons Learned column for CONTROL magazine, columnist Béla Lipták, PE, shows what can happen when advanced process control meets economics.

09/10/2005

Engineers can control the economy: Part II

In this second installment, CONTROL Columnist Béla Lipták, PE, illustrates an assumed ANN model of the U.S. economy to show what can happen when advanced process control meets economics.

11/14/2005

A process only mankind can control

Global warming, devastating hurricanes and rising ocean currents are all signs of a presently-out-of-control global heat balance that may result in colder winters and our summers permanently disappearing.

01/09/2006

Can process control help stabilize global warming?

CONTROL columnist Béla Lipták, PE, continues his Lessons Learned series on Global Warming, and what the proceess control confraternity can do about predicting the timing and sizing of future events.

03/14/2006

Why do we have global warming?

CONTROL columnist Béla Lipták, PE, finishes his Lessons Learned series on global warming, and what the process control confraternity can do about understanding and perhaps controlling it.

05/18/2006

How to select control valves, Part 1

When it comes to selecting and sizing control valves, the non-commercial chart in this article not only helps you pick the right one for the job, but also serves as a fantastic reference tool you can download!

07/14/2006

How to select control valves, Part 2

When it comes to selecting and sizing control valves and positioners, this article not only helps you pick the right one for the right job, but also includes a valuable valve selection chart you can download!

09/12/2006

The power of the Sun: Part 1

In discussing global energy issues, CONTROL columnist Béla Lipták, PE, estimates that global warming damage will consume as much as 20% of the global GDP by 2020 even without energy wars.

01/05/2007

Control of the solar-hydrogen plant

Columnist Béla Lipták describes equipment and control requirements of the solar-hydrogen demo power plant and says we now are in critical need of them because the stakes are even higher.

03/01/2007

The global energy future – Part 3

Control's own Béla Lipták continues his series on the future of global energy, stating that in order to obtain maximum energy recovery, the various solar collectors described all need to track the sun.

05/07/2007

The Energy Future—Process Control’s Role

Find out about the “zero energy home of the future” and the hydrogen economy. What are the potentials of process control in wind, ocean wave, and geothermal energy systems.

07/12/2007

Distillation, Part 5: Multiple Products

In Part 5 of this series on distillation control and optimization, we find that adding a side-stream component to your process gives an additional degree of freedom, but makes it even more essential to not mismatch the variables.

08/01/2007

The Global Energy Future – Part 5

Covering 10 million American homes with solar roofs would trigger the biggest economic expansion of the decade.

08/31/2007

On the Road to Renewable Transportation

The OECD estimates that replacing 10% of the country’s motor fuels with bio-fuels would use one-third of all croplands.

11/06/2007

Distillation Control and Optimization – Part 7

Plant-Wide Optimization Involves Coordinating the Control of Distillation, Furnaces, Compressors, etc. to Maximize the Profitability of the Entire Operation

01/03/2008

The Third Industrial Revolution

The Transition to a Solar/Hydrogen Economy Will Trigger an Economic Boom Unseen Since the Marshall Plan.

03/07/2008