2008

21-40 of 191 < first | | | last >
  • Design Methods to Defer Costs on Batch Projects

    This paper analyzes two methods of deferring costs associated with the installation of batch automation systems. The first defers cost by postponing the configuration of recipes and batch management until after start-up. With this method operations personnel manually coordinate the execution of phases and maintain a paper batch record. Often this leads to a design that uses larger and more specialized phases since the execution of the recipe is not automated. A batch management package and recipes can be added at some later time to create a fully automated process. The alternative design implements the batch management package up-front, postponing the configuration of automatic phases until later. Operations personnel would then use the batch management package to guide them through the process as they manipulate the control modules at the direction of the batch management package. Automated phases are implemented in stages deferring costs over time. This implementation can be carried out in a prioritized order, based on operator input, specifying which process operations are the most time consuming and difficult. The two methodologies are examined for potential pitfalls and benefits of each. Compromises that must be made, as well as the functional advantages and deficiencies of each approach will be discussed.

    Thomas E. Crowl, Principal Application Engineer, Siemens Moore; James V. Heckmanski, Sr. Project Engineer – Batch Solutions, Siemens Moore
    08/26/2008
  • Safety Logic in Modular Batch Automation

    In the early days of batch automation there was usually a central computer that controlled everything. This computer ran recipes, executed sequential logic, did data acquisition of process variables and also performed direct digital control (DDC) of analog and discrete devices. Since one computer did every thing from sequencing to DDC it was only natural to imbed the shutdown and safety logic into the batch sequential code that was running normal operations. And since one huge monolithic program ran the entire process, the safety logic was always running. In modern S88 (IEC61512) based modular batch automation systems the monolithic code has been replaced by smaller reusable phases controlled by a batch manager that runs recipes. Many who have grown up with DDC imbed safety logic inside the phases. This approach requires an active equipment phase at all times to keep safety logic available at all times. There is a problem with this approach. Phases are transient by nature. They have a beginning and an end. You cannot guarantee that there will always be an active equipment phase. Although there may be some holding logic associated only with a specific phase, often this logic is generic and should be moved up to the unit level. This paper looks at methods available to the user for safety and exception recovery logic in current modular batch systems. Included are case studies of five separate batch projects where recognizing exception conditions and executing safety shutdown logic was essential.

    Thomas E. Crowl, Principal Application Engineer, Siemens Moore Process Automation Inc; Cynthia L. Benedict, Lead Project Engineer, Siemens Moore Process Automation Inc.
    08/28/2008
  • The Project Management Office

    The purpose of this paper is to explain the general concepts, purposes, specific responsibilities and requirements associated with an effective project management office.

    Thomas B. Clark, Project Success, Inc. (formerly YCA)
    07/14/2008
  • Wireless Concerns in Industrial Applications

    Why is Lack of Interoperability in Wireless a Concern in Industrial Applications?

    While the available potential for wireless deployment in factory automation is high, the adoption of wireless is plagued by various concerns surrounding the wireless technology, one of which is lack of interoperability. In the recent past, interoperability was not as major concern as it is currently. People predominantly used to build their own systems or purchased them from a single supplier. Increasing plant automation has spurred the demand for wireless devices and systems for numerous applications like monitoring, alarm and telemetry with a large number of suppliers offering these systems or solutions. They are often customized on proprietary protocols but not based on a common standard or architecture. As a result, these devices offered from multiple suppliers are not often compatible with one another. So even though the options have increased, the end users have become more concerned about the compatibility of the devices.

    Syed Tauseef Ahmad
    10/08/2008
  • System Configuration Management and Version Control in an FDA Regulated Environment

    Managing the genealogy of database configuration and its life cycle is critical to following 21 CFR Part 11. In addition to recipes and equipment model configurations, phase logic and control strategies residing in automated control systems are an integral part of automated batch execution. Typical configuration management systems do not provide the capability to implement and guarantee a standard development procedure for the database configuration. With a set of enforced qualification states and GAMPbased transitions, a strategy that has been properly tested and approved with signatures can be installed on a process system. For control systems operating in validated environments, this procedure is paramount. This paper explores the life cycle management requirements for batch phase logic and control strategies executing in a validated environment.

    Steve Zarichniak, WBF
    06/23/2008
  • Delivering Process Information to the Desktop Using Next-Generation Microsoft Office Products

    Optimizing production starts with collecting and analyzing a wide variety of data, including continuous process data, batch event data, and other event data, such as material movements and manual operations. Until now, manufacturers have had to rely on costly approaches for integrating and analyzing the process information they need to better understand and improve their production. What’s required is a cost-effective, easy-to-use method of querying, analyzing, and presenting information at the desktop of plant supervisors, engineers, and management. The right solution takes advantage of open technologies and commodity desktop tools and hides the underlying complexity that comes from dealing with diverse data sources. Proprietary or industrial desktop tools have not provided the ease of use and flexibility available in today’s office products. Standard Microsoft Office products and web browsers will significantly lower the cost of delivering information to the desktop. The future lies in using these powerful new commodity tools to provide batch and continuous process information to the desktops of business decision-makers and other knowledge workers in the plant and throughout the enterprise.

    Steve Zarichniak, Applications Consultant- Systems Business Center, Honeywell IC
    08/26/2008
  • Video Process Monitoring

    The white paper describes the hardware and software elements of a video process monitoring system, how it uses the plant’s industrial network to transmit video to the control system and how the video images appear on HMI screens.

    Steve Rubin, President & CEO, Longwatch Inc.
    09/10/2008
  • Integrating Batch Automation with New Product Development: Meeting the Challenge

    A major cosmetics manufacturer had just finished the first production run of a brand new skin cleanser, when the error was discovered – an ingredient in the cleanser was wrong. Upon investigating, it was discovered that a data entry person had accidentally keyed not the final approved formula, but a previous unapproved version into MES/ERP. The entire production run, including bottles and labels, was disposed of at a $250,000 loss. Traditionally, it has been difficult for product developers to share information not just with manufacturing, but even among themselves. Formulas, and other product development data has been scattered across the enterprise in various R&D labs, and isolated in spreadsheets, legacy systems, disorganized file cabinets or lab notebooks. Due to the lack of a centralized product development information system linked to MES/ERP, formulas have usually been manually keyed, inevitably creating batch errors. A new breed of product development software has emerged that centralizes all product development data, automates the product development process and creates a seamless link between R&D and MES/ERP, ensuring accurate and timely communication not only of new product formulas, but also of modifications to existing formulas. This presentation will highlight this software and detail how it can be used to improve integration of batch automation with new product development.

    Steve Phelan, Senior Vice-President, Formation Systems Inc.
    08/28/2008
  • ISA 95 Integration Between SAP R/3 And Batch In Pharmaceutical Applications

    The ISA 95 Enterprise to Manufacturing integration model is used to structure the integration processes between business systems and the plant floor. Through the use of the ISA 95 “structures, a “common denominator” business model was established for integrating SAP’s R/3 PP-PI transactions and data structures with an ISA 88 batch automation data structure.

    Stephan Van Dijck, WBF
    06/23/2008
  • Seamless Project Execution, from URS to Implementation and Maintenance

    Since ISA S88 is widely used within the process industry, process engineers and automation engineers from the DCS vendors use a common terminology and structure to describe batch processes and production. Why not use this common language to create a DCS independent relational database, mapping the S88 plant model supporting the life-cycle of the project from (Unit Requirements specification (URS) to maintenance? Starting with the URS, data are entered in the database and over the subsequent project phases more and more details are added by the control engineers. The consequent use of types and instances together with the possibility to define rules for the later generation of software reduces the necessary input to a minimum. As just one database exists instead of several documents, data inconsistency is impossible. Later the DCS specific solutions are referenced to the system independent types in the database. The software for the DCS is generated, applying the rules set for the project. The implementation time and the number of faults is reduced dramatically. The content of the database is documented automatically through several standardized reports according to GMP guidelines, providing a secure way to fully comply with FDA requirements. Test documents are generated in a similar way.

    Steffen Uebler, Dipl. Ing., SIEMENS AG
    08/24/2008
  • Establishing Compliance of Batch SCADA Systems with FDA cGMP 21 CFR Part 11

    FDA enforcement of a 1997 cGMP regulation, 21 CFR Part 11, for electronic records and signatures, is imminent. Compliance policy Guidelines were issued May 1999 to clarify the agency’s expectations of pharmaceutical and medical device manufacturers. FDA scrutiny of system implementations is anticipated to be extensive. The popular use of “open” architectures and commercial-off-the-shelf software products for automated batch control and data management has introduced many challenges to compliance with this regulation. In addition, legacy systems are not exempt and verification of data integrity compliance is expected to be retroactive. Batch SCADA systems have the proven ability to reduce costs and improve product consistency and the industry is heavily dependent upon their continued application in the manufacturing environment. Regulatory requirements shall be reviewed, with real-world examples of assessment and compliance resolution for Batch SCADA Systems. System functionality requirements shall be stressed without direct reference to product or service brand names.

    Stanley L. Whitman, Consulting Project Manager, Raytheon Consulting & Systems Integration Inc.
    08/28/2008
  • The Fundamentals of Refractory Inspection with Infrared Thermography

    Thermography has been used to inspect the condition of refractory lined vessels and piping for many years now. It is a proven and accepted method for locating damaged and missing refractory material. Most companies however, do not fully understand the full benefits of performing refractory surveys. They mainly use thermography only before a plant turnaround to determine the extent of refractory damage in order to estimate the materials and labor needed for the repairs. This paper discusses the fundamentals of refractory inspection and how Thermal Diagnostics Limited has been using Infrared thermography in Trinidad and Tobago as an effective means of predicting areas of future refractory problems in addition to pre-turnaround surveys.

    Sonny James, Managing Director Thermal Diagnostics Ltd
    07/29/2008
  • Simatic HMI

    The "WinCC Security Concept" documentation contains recommended and mandatory procedures for planning and building secure, networked WinCC automation solutions with connected Web clients, SIMATIC IT applications and office networks based on customer specifications. This documentation serves as both a reference and a guide for network administrators working in the following areas:
    • Configuration of WinCC

    • Commissioning and servicing of WinCC

    • Management of company networks


    It is intended to facilitate cooperation.

    Siemens
    10/20/2008
  • Security Concept PCS 7 and WinCC

    The paper provides an in depth tutorial of how to help secure networks in production plants. Its recommendations are based on latest platform technology, current standards and WinCC and PCS 7 product features. It offers comprehensive coverage of security concepts and up-to-date detail documents that explore specific solutions and recommended configuration based on specific products or topics.

    Siemens
    10/27/2008
  • The Price of the Split Between S88 and S95

    There is a split between the S88 and S95 models. In the physical model of S95 procedures are not implemented. Why not use PFC for logistic procedures instead of BPML? Your engineers have to learn only one model. You can combine S88 and S95 to one physical model for batch, continuous and discrete processing including storage units.

    Siem Broersen, WBF
    06/23/2008
  • Impact of Batch Software Upgrades on Validated Batch Applications

    Batch software upgrades on validated batch applications raises many issues. This paper talks about guidelines on how much revalidation evidence is needed to meet regulatory requirements for validated batch applications, if changes made to software that is utilized in developing these automated applications. In addition, the benefits and liabilities expected after making upgrades to batch software. Often, it is difficult to estimate the level of testing effort needed to perform on a production system after implementing software upgrades. The outcome of this testing/documentation should provide sufficient data to demonstrate that software upgrades have no negative impact on equipment/product/process performance and the system has been restored to its validated status. This is the absolute requirement for Pharmaceutical Companies and should meet the guidelines required by FDA and internal company standards.

    Shri Mariyala, WBF
    06/23/2008
  • An Integrated System with Batch functions And Front-End Scheduling based on S88 - Application to Beverage Plant -

    The case study in this paper illustrates the value of integrating front-end scheduling with a batch control system. Recipe changes, and addition of recipes, occur frequently in the target process. However, since both scheduler and batch packages were designed with the ISA-S88.01 model in mind, these packages could be tightly coupled (well integrated) – and, as a result, it is easy to add or change recipes. The frontend scheduler is not limited to performing scheduling; it also provides an easy-to-grasp real-time production status display which can help enhance efficiency and productivity.

    Ryoichi Himono, Yokogawa Electric Corporation; Kenichi Takahata, Suntory Limited; Kiyokazu Mano, Suntory Limited
    08/28/2008
  • Performance Comparison of Flexible Detector Designs

    The purpose of this paper is to present test results of recent measurements on a scintillating fill fluid (i.e., liquid scintillator filled) detector and a scintillating fiber bundle detector designs, and explain the observed differences in efficiency. In our measurements we observe an improvement of factor of 2.4 in light output for a fill fluid detector compared to scintillating fiber bundle detector of the same diameter and length.

    Ronan Measurements
    02/06/2008
  • "Collaborate-Breakthrough-Profit:" A Myth, Minefield or Treasure Chest?

    The objective of this paper is to provide an outlook on emerging Collaborative Production Management (CPM) tools. It will discuss these CPM tools in relation to material transfers (ingredient addition) in Batch manufacturing. Illustrating what collaborative initiatives these tools are likely to support, why they are required and how they may be deployed. The concept of collaborating is an old concept, but Collaborative Production Management, and the notion of CPM tools is a relatively new manufacturing trend. One that has been revitalized by the internet and the advent of more open manufacturing systems. Today global measurement and control suppliers find they are being pushed hard by manufacturers to increase their development momentum in this emerging area of “collaborative production management tools”.

    Rodger W. Jeffery, WBF
    06/23/2008
  • E-Business Will Change Manufacturing Strategies

    Initially E-Business was surrounded by much hype, but, eventually, E-Business will enable new business models in manufacturing. Collaboration processes, touted in E-Business, are only possible if manufacturing is an agile component of the extended supply chain. A product must be made to a demand signal or accurate forecast to fulfill the order and ensure a satisfied customer. However, EBusiness has not yet been adequately translated by the business into actionable manufacturing priorities. E-Business Trading Exchanges will eventually move from procurement buy side to sell side processes. In the automation process, more inventories will be eliminated from the supply chain. Reliable delivery from manufacturing will become more critical as the margin for error diminishes. Manufacturers must focus on consistency and delivery to demand. Integration of plant information processes and product specification management as part of managing the product lifecycle is important manufacturing foundations for E-Business. S88 and SP95 provide a useful framework to support these strategies. Most manufacturers are still translating business strategies into coordinated IT and business initiatives. They are trying to do too much and many IT initiatives are still disconnected. This will constrain E-Business initiatives dependent on integrated back end IT and business processes. To prepare for E-Business manufacturers must build organizational readiness and governance, manage integration, and integrate information across the extended supply chain against priorities set by the business strategy. This paper will discuss industry trends, pitfalls, and make pragmatic recommendations for manufacturers confronted with the challenge of moving manufacturing to align with emerging EBusiness Strategies.

    Roddy Martin, Service Director- CPG and Lifesciences Manufacturing, AMR Research
    08/26/2008
21-40 of 191 < first | | | last >