21-40 of 191 < first | | | last >
  • The Price of the Split Between S88 and S95

    There is a split between the S88 and S95 models. In the physical model of S95 procedures are not implemented. Why not use PFC for logistic procedures instead of BPML? Your engineers have to learn only one model. You can combine S88 and S95 to one physical model for batch, continuous and discrete processing including storage units.

    Siem Broersen, WBF
  • The Fundamentals of Refractory Inspection with Infrared Thermography

    Thermography has been used to inspect the condition of refractory lined vessels and piping for many years now. It is a proven and accepted method for locating damaged and missing refractory material. Most companies however, do not fully understand the full benefits of performing refractory surveys. They mainly use thermography only before a plant turnaround to determine the extent of refractory damage in order to estimate the materials and labor needed for the repairs. This paper discusses the fundamentals of refractory inspection and how Thermal Diagnostics Limited has been using Infrared thermography in Trinidad and Tobago as an effective means of predicting areas of future refractory problems in addition to pre-turnaround surveys.

    Sonny James, Managing Director Thermal Diagnostics Ltd
  • The Business Value Proposition for Automation

    The purpose of this white paper is to show the bottom line economic impact and improved business performance that can be obtained through implementation of Industrial IT solutions.

  • Targeting Batch Outcome using Predictive Control

    The paper will present a new methodology for using predictive control to improve batch process outcomes. Predictive control refers to a situation in which data collected during the execution of earlier process stages are used to retarget controllable variables during later process stages. Improvement is measured either by increasing output yield or by shifting the distribution of product outputs towards higher bin values, thereby increasing the value of a given output quantity. The technology includes a graphical method of presenting the logical flow of causality and functionality along a process. The paper describes how this methodology has been used in order to improve production outcomes in a batchbased system. The first part of the paper will present the technology, its pros and cons relatively to the traditional S88 without predictive control, and how the adaptive system is integrated within control systems. The second part of the paper will present results from a specific case study in which this technology has been implemented.

    Dr. Eyal Brill, Mr. Oren Yulevitch, WBF
  • System Configuration Management and Version Control in an FDA Regulated Environment

    Managing the genealogy of database configuration and its life cycle is critical to following 21 CFR Part 11. In addition to recipes and equipment model configurations, phase logic and control strategies residing in automated control systems are an integral part of automated batch execution. Typical configuration management systems do not provide the capability to implement and guarantee a standard development procedure for the database configuration. With a set of enforced qualification states and GAMPbased transitions, a strategy that has been properly tested and approved with signatures can be installed on a process system. For control systems operating in validated environments, this procedure is paramount. This paper explores the life cycle management requirements for batch phase logic and control strategies executing in a validated environment.

    Steve Zarichniak, WBF
  • Synthesis of Optimal Batch Distillation Sequences

    After the original design is completed, optimum Batch Distillation Sequencing/Operation in a chemical plant is usually a matter of trial and error that evolves as operators gain experience with the system. Some predictive tools exist for simulating batch separation systems, and they have been used with success in designing new separation systems and in analyzing existing systems. However, these tools require the user to define all the operation steps for each cut. The number of case studies required to approach an optimum scenario is very large, and is almost impossible to accomplish. Optimal design and operation, however, is the ultimate goal. In this paper we propose how to truly optimize a batch separation sequence. Combining the flowsheeting and modeling features of a process simulator provides an advantageous way to analyze and optimize operating scenarios for optimum batch separation sequencing. This approach is demonstrated with the optimization/debottlenecking of several batch distillation scenarios to separate and recover a heavy product, a partially water-miscible solvent, and water from a batch reactor effluent. Simulations identified a 25% increase in capacity with a minimum capital investment.

    Matthew J. Engel, Senior Process Engineer, Air Products and Chemicals Inc.; Bradley H. Cook, Craig S. Landis, Steven J. Tedeschi, Anthony J. Zehnder
  • SP88 Part Two Overview

    The World Batch Forum was originally formed to support the S88 Batch Control standard. All forums since have related in some way to the published part of the standard (S88.01) or to other, generally related, work. The second planned part of the standard is now ready for release. This paper attempts to put that event in perspective in the context of the current status of an on-going effort.

    Lynn W. Craig, Manufacturing Automation Associates, Inc.
  • Six Sigma and S88 Unite for Batch Automation Productivity Improvement

    Six Sigma is a quality improvement methodology applied to improving any type of process. It is a methodology endorsed by and heavily integrated into several major chemical companies. This paper outlines how the program works with regard to performing process studies for the purpose of improving batch productivity through automation within a manufacturing environment.

    Bruce Jensen, Systems Marketing and Sales Support Manager, Yokogawa Corporation of America
  • Simatic HMI

    The "WinCC Security Concept" documentation contains recommended and mandatory procedures for planning and building secure, networked WinCC automation solutions with connected Web clients, SIMATIC IT applications and office networks based on customer specifications. This documentation serves as both a reference and a guide for network administrators working in the following areas:
    • Configuration of WinCC

    • Commissioning and servicing of WinCC

    • Management of company networks

    It is intended to facilitate cooperation.

  • Security Concept PCS 7 and WinCC

    The paper provides an in depth tutorial of how to help secure networks in production plants. Its recommendations are based on latest platform technology, current standards and WinCC and PCS 7 product features. It offers comprehensive coverage of security concepts and up-to-date detail documents that explore specific solutions and recommended configuration based on specific products or topics.

  • Security Assurance Levels: A SIL Approach to Security

    This paper takes a critical look at the SIL concept, its overall strengths and weaknesses as applied to security, and proposes general models for use within the security arena.

    Dr. Nate Kube, PhD, and Bryan Singer, CISM, CISSP Wurldtech Security Technologies, Inc.
  • Seamless Project Execution, from URS to Implementation and Maintenance

    Since ISA S88 is widely used within the process industry, process engineers and automation engineers from the DCS vendors use a common terminology and structure to describe batch processes and production. Why not use this common language to create a DCS independent relational database, mapping the S88 plant model supporting the life-cycle of the project from (Unit Requirements specification (URS) to maintenance? Starting with the URS, data are entered in the database and over the subsequent project phases more and more details are added by the control engineers. The consequent use of types and instances together with the possibility to define rules for the later generation of software reduces the necessary input to a minimum. As just one database exists instead of several documents, data inconsistency is impossible. Later the DCS specific solutions are referenced to the system independent types in the database. The software for the DCS is generated, applying the rules set for the project. The implementation time and the number of faults is reduced dramatically. The content of the database is documented automatically through several standardized reports according to GMP guidelines, providing a secure way to fully comply with FDA requirements. Test documents are generated in a similar way.

    Steffen Uebler, Dipl. Ing., SIEMENS AG
  • Safety Logic in Modular Batch Automation

    In the early days of batch automation there was usually a central computer that controlled everything. This computer ran recipes, executed sequential logic, did data acquisition of process variables and also performed direct digital control (DDC) of analog and discrete devices. Since one computer did every thing from sequencing to DDC it was only natural to imbed the shutdown and safety logic into the batch sequential code that was running normal operations. And since one huge monolithic program ran the entire process, the safety logic was always running. In modern S88 (IEC61512) based modular batch automation systems the monolithic code has been replaced by smaller reusable phases controlled by a batch manager that runs recipes. Many who have grown up with DDC imbed safety logic inside the phases. This approach requires an active equipment phase at all times to keep safety logic available at all times. There is a problem with this approach. Phases are transient by nature. They have a beginning and an end. You cannot guarantee that there will always be an active equipment phase. Although there may be some holding logic associated only with a specific phase, often this logic is generic and should be moved up to the unit level. This paper looks at methods available to the user for safety and exception recovery logic in current modular batch systems. Included are case studies of five separate batch projects where recognizing exception conditions and executing safety shutdown logic was essential.

    Thomas E. Crowl, Principal Application Engineer, Siemens Moore Process Automation Inc; Cynthia L. Benedict, Lead Project Engineer, Siemens Moore Process Automation Inc.
  • S88: The Good, The Bad and The Ugly!!

    As S88 becomes widely adopted within the batch industries operating companies are increasingly looking for reliable transfer of recipes between systems from different vendors. This makes sense for industry as operator companies seek to use best in class components to reduce design and implementation times as well as integrate effectively with existing systems. However, whilst the standard is now well proven for implementation of projects within a vendor's suite of tools, it is far less common to find real transfer of recipes between systems from different vendors.

    Alistair Gillanders, WBF
  • S88.01 Models and Commissioning / Qualification Mapping

    The following paper makes a link between ISA-S88.01 Batch Control Models and Terminology, and key features and terminology, used in ISPE Baseline Pharmaceutical Engineering Guide: Commissioning and Qualification. The problem is how to extend effects of modular design, based on S88.01 models, to other activities: application software development, FAT, commissioning, qualification & validation. The solution is the linkage between different islands of terminology, knowledge, experiences and views: design, user, control system vendor, package unit vendor, quality assurance and maintenance. S88.01 physical model, procedural control model and process model provide consistent definition of commissioning, qualification and validation scope. Implementing the proposed method results in reduction of manpower, expenses of documentation and project implementation time.

    Marin Klaric, Manager of Department for Designing, PLIVA
  • S88 Case Study for Improved Production Flexibility, Safety and Environment

    Does your plant suffer from high software maintenance costs, inflexible batch production, safety and environmental regulatory pressures? The Ineos Acrylics Plant at Darwen in the UK was experiencing these problems which are experienced with many legacy batch control systems in the modern chemicals market. The problems can be overcome with an S88 compliant system and approach but the right structure is essential. Reviewing the problems and plans to replace the system it was clear that a simple “migration” of the existing system would achieve little and that a complete re-structuring based on S88 was required. It was anticipated that this would give economic benefits of reduced software maintenance costs, increased production flexibility, reduced environmental/safety risks, all of which were achieved and more besides. This paper describes the process, problems and achievements of the project.

    Chris Morse, Engineering Group Leader, Honeywell IASD
  • RFID Helps Track Assets, Manage Safety

    In this paper we discuss a solution to implement this safety requirement using RFID technology and advanced location sensing algorithms.

  • Retrofit of an Existing Process Cell with S88

    Retrofitting a working process cell that must manufacture medicine using the S88 standard presents unique challenges. Engineering solutions are not simply driven by cost-benefit analyses when working in a GMP environment. Gathering true user requirements for a system that has been in use for 10 years is not nearly as simple as one would expect and educating developers, management, and engineering technicians on the effective implementation of the standard in a design that is user-friendly requires more time than engineering the solution. Configuration management and revision control of nearly 70 modules in the development process while working with multiple vendors requires careful planning and a defined set of processes before starting the project. The business realizes many benefits from the delivered flexible system, but there is a price in ongoing documentation management.

    Brian N. DeHaan, WBF
  • Replacement Batch Control System for a Multipurpose Contract Manufacturing Plant

    Successful Contract Pharmaceutical Manufacturing in a GMP regulated environment is heavily dependent on the flexibility and utilisation of the available processing plant and its guaranteed performance. However, changing plant configuration and revalidation is time consuming and therefore costly. This paper presents a case study of the implementation of an S88.01 based control system, as part of a strategy to change an existing process building with single product manufacturing capability, to a multipurpose plant and contrasts it with an earlier retrofit implementation to a similar plant for multi-product use. The paper reviews some important considerations in the equipment model design including the design approach for the control system architecture and methodologies employed for software coding of generic phases, which have been found to yield real economic benefits and ensure the achievement of the required plant flexibility. It also reviews the benefits to the design and validation process from following a structured 'GAMP3' approach. Some of the measurable economic benefits achieved will be shown to include reduced project implementation time, life cycle cost savings through reduced manpower effort during the engineering and validation stages and production capacity increase.

    Eur. Ing. C. M. Marklew C.Eng. B.Sc. FinstMC, MIEE, Principle Engineer, Aston Dane plc; Mr R McGregor, Control Systems Manager, Chirex (Annan) Ltd
21-40 of 191 < first | | | last >