Avoid Pitfalls in Precision Temperature Measurement


Everyone is familiar with the concept of temperature in an everyday sense because our bodies feel and are sensitive to any perceptible change. But for more exacting needs as found in many scientific, industrial, and commercial uses, the temperature of a process must be measured and controlled definitively. Even changes of a fraction of a degree Celsius can be wasteful or even catastrophic in many situations.

For example, some biotech processes require elevated temperatures for reactions to occur and added reagents require exactly the right temperature for proper catalytic action. New alloys of metal and composites, such as those on the new Boeing 787 Dreamliner, are formed with high temperature methods at exacting degree points to create the necessary properties of strength, endurance, and reliability. Certain medical supplies and pharmaceuticals must be stored at exactly the desired temperature for transport and inventory to protect against deterioration and ensure effectiveness.

These new applications have driven the hunt for more exacting temperature measurement and control solutions that are easy to implement and use by both novice users and experienced engineers alike. This is a challenging task. However, new equipment and standards, such as LXI (LAN Extensions for Instrumentation) offer a methodology to perform these exacting measurements in test and control applications.

Many LXI devices are available on the market today. But, what do you need to know to select the best temperature measurement solution for your test and control application? This paper describes the common pitfalls of precision temperature measurement and what you need to consider before selecting a temperature measurement solution.

This content is available to logged in users.

Author: Data Translation  | File Type: PDF

Find more white papers on Field Instrumentation : Temperature

View all white papers»