A Simple Single Setting Controller Yields PI Performance


This paper presents a simple velocity control algorithm with output modification that has equivalent PI controller dynamic performance. The controller features a single control setting. The controller can be easily configured in most distributed control systems, DCS and programmable logic controllers, PLC. This paper describes the controller structure and behavior as well as a control discussion on how to calculate the gain setting to determine the control period. To test the controller on real processes, the algorithm was applied to a level and temperature control loops in a laboratory, pilot plant setting.

A control algorithm presented by W. Steven Woodward describes a velocity temperature controller [1] that modifies the output based on the pervious output value when the process variable, PV, crosses the set point, SP. This modification is the algebraic mean of the current calculated output and the output value at the previous zero error crossing. The term coined for this algorithm is "Take-Back-Half", TBH. This algorithm has some acceptance as an embedded application controller. In this paper we will demonstrate how this controller has applicability to the process control community. In section 2, we will describe how this simple controller functions and how to program the algorithm. Section 3 discusses the controller system design and how to determine the gain setting and closed loop period. In section 4 we will present the results of the pilot scale controller’s performance. In section 5 we will set forth the conclusions.

This content is available to logged in users.

Author: Robert L Heider, PE, & Zachary Wegmann  | File Type: PDF

Find more white papers on Control Platforms : Advanced Control

View all white papers»