Predicting Control Valve Noise in Gas and Steam Applications: Valve Trim Exit Velocity Head vs. Valve Outlet Mach Number


Predicting and managing control valve noise has long been an important consideration in gas and steam applications, with the dual goals of protecting workers from potential auditory damage and preventing excessive vibration that could destroy equipment and piping, possibly leading to a catastrophic failure.

At first glance, it may seem that a logical way to achieve these goals would be to limit valve trim exit velocity head to a maximum of 480 kilopascals (kPa), and this indeed is how some have addressed the issue. In practical application, however, it is an oversimplified approach that, in many cases, will not produce the desired results. First, it typically requires the use of expensive multi-stage or multi-turn trim designs, which can cost up to 30 percent more than a simpler solution. More importantly, it also can create a false sense of safety.

This article will explain why the focus should instead be on keeping the valve outlet Mach number low. Practical examples will be used to illustrate that:
- Even if the trim exit velocity head is kept below 480 kPa, valve noise can be unacceptably high if the valve outlet Mach number is high.
- Even if the trim exit velocity number is above 480 kPa, valve noise can be kept to acceptable levels - without using costly trim designs - if the valve outlet Mach number is kept low.

This content is available to logged in users.

Author: Joseph Shahda, Dresser Masoneilan  | File Type: PDF

Find more white papers on Control Platforms : Safety SystemsField Instrumentation : Valves

View all white papers»