2011

1-20 of 31 < first | prev | | last >
  • Cybersecurity Through Real-Time Distributed Control Systems

    Critical infrastructure sites and facilities are becoming increasingly dependent on interconnected physical and cyber-based real-time distributed control systems (RTDCSs). A mounting cybersecurity threat results from the nature of these ubiquitous and sometimes unrestrained communications interconnections.

    Oak Ridge National Laboratory
    01/10/2011
  • Cloud Instrumentation, the Instrument Is In the Cloud

    A short bit of history helps to understand why the cloud instrumentation development is so significant.

    The first created instruments, let us call them traditional instruments, are of standalone or box format. Users connect sensors directly to the box instrument front panel, which contains the measurement circuitry and displays the results. Initially it was on analog meters and later with digital displays.

    In many cases, test engineers wanted to have instruments communicate with each other, for instance in a stimulus/response experiment, when a signal generator instructs a digitizer when to start taking samples. This was initially done with serial links, but in the 1970s the Hewlett Packard Interface Bus, which evolved into today's IEEE-488 interface, became extremely popular for connecting instruments.

    The next major breakthrough in measurement technology came with the availability of desktop computers, which made it more cost effective to run test programs, control instruments as well as collect data and allow test engineers to process and display data. Plug-in IEEE-488 boards allowed minicomputers and later PCs to perform these tasks.

    Today such interface cards are often not needed thanks to instruments that communicate with PCs directly over USB or the Ethernet, and most recently even over wireless Ethernet schemes.

    Marius Ghercioiu, President of Tag4M at Cores Electronic LLC
    01/14/2011
  • What U.S. Environmental Protection Agency Greenhouse Gas Regulation Changes Mean to You

    There is an upside for forward-thinking manufacturers regarding EPA blueprint for the way state and local regulatory agencies use the Clean Air Act permitting process to regulate greenhouse gas emissions in the United States.

    U.S. Environmental Protection Agency blueprint for the way state and local regulatory agencies use the Clean Air Act permit process to regulate greenhouse gas emissions in the United States is defined in their November 17 document: PSD and Title V Permitting Guidance for Greenhouse Gases.

    The greenhouse gases that will be regulated include carbon dioxide, methane, nitrous oxide, sulfur hexafluoride and a number of refrigerants.

    The Agency believes that these compounds are responsible for changing the planet's climate and is thus taking steps to reduce emissions of the gases throughout the nation. In taking this action, EPA is breaking new ground, by not only defining a broad new class of air pollutants, but by changing the way that the Agency regulates emissions of those pollutants.

    Traditionally, EPA has set definitive, measurable goals when seeking to reduce air pollutant emissions, both in terms of how much a compound a facility is allowed to emit and in terms of the maximum amount of the pollutant that can be in the air we breathe. The Agency will not take the same approach when it comes to greenhouse gases. Instead, they will be asking facilities to reduce emissions to the greatest extent possible and economically feasible.

    And, yes, there is upside for forward-thinking manufacturers.

    Catalytic Products International
    01/21/2011
  • A Systematic Approach To Plantwide Control

    This paper summarizes Sigurd Skogestad's struggles in the plantwide control field.

    A chemical plant may have thousands of measurements and control loops. By the term plantwide control it is not meant the tuning and behavior of each of these loops, but rather the control philosophy of the overall plant with emphasis on the structural decisions. In practice, the control system is usually divided into several layers, separated by time scale.

    My interest in this field of plantwide control dates back to 1983 when I started my PhD work at Caltech. As an application, I worked on distillation column control, which is excellent example of a plantwide control problem. I was inspired by Greg Shinskey's book on Distillation Control, which came out with a second edition in 1984 (Shinskey, 1984). In particular, I liked his systematic procedure, which involved computing the steady-state relative gain array (RGA) for 12 different control structures ("configurations"); the DV-configuration, LV-configuration, ratio configuration, and so on. However, when I looked in more detail on the procedure I discovered that its theoretical basis was weak. First, it did not actually include all structures, and it even eliminated the DB-configuration as "impossible" even through it is workable in practise (Luyben, 1989). Second, controllability theory tells that the steady-state RGA by itself is actually not useful, except that one should avoid pairing on negative gains. Third, the procedure focused on dual composition control, while one in practise uses only single end control, for example, because it may be optimal economically to use maximum heating to maximize the recovery of the valuable product.

    Sigurd Skogestad, Norwegian University of Science and Technology (NTNU)
    01/25/2011
  • The First Step

    The global trends and challenges driving the need for industry to improve energy efficiency are well known. The growing population and economic development in many countries throughout the world has caused energy and transportation fuel consumption to increase.

    Honeywell
    02/17/2011
  • How Stuxnet Spreads - A Study of Infection Paths in Best Practice Systems

    The Stuxnet worm is a sophisticated piece of computer malware designed to sabotage industrial processes controlled by Siemens SIMATIC WinCC, S7 and PCS 7 control systems. The worm used both known and previously unknown vulnerabilities to spread, and was powerful enough to evade state-of-the-practice security technologies and procedures.

    Since the discovery of the Stuxnet worm in July 2010, there has been extensive analysis by Symantec, ESET, Langner and others of the worm’s internal workings and the various vulnerabilities it exploits. From the antivirus point of view, this makes perfect sense. Understanding how the worm was designed helps antivirus product vendors make better malware detection software.

    What has not been discussed in any depth is how the worm might have migrated from the outside world to a supposedly isolated and secure industrial control system (ICS). To the owners and operators of industrial control systems, this matters. Other worms will follow in Stuxnet's footsteps and understanding the routes that a directed worm takes as it targets an ICS is critical if these vulnerable pathways are to be closed. Only by understanding the full array of threats and pathways into a SCADA or control network can critical processes be made truly secure.

    It is easy to imagine a trivial scenario and a corresponding trivial solution:
    Scenario: Joe finds a USB flash drive in the parking lot and brings it into the control room where he plugs it into the PLC programming station.
    Solution: Ban all USB flash drives in the control room.

    While this may be a possibility, it is far more likely that Stuxnet travelled a circuitous path to its final victim. Certainly, the designers of the worm expected it to - they designed at least seven different propagation techniques for Stuxnet to use. Thus, a more realistic analysis of penetration and infection pathways is needed.

    This White Paper is intended to address this gap by analyzing a range of potential "infection pathways" in a typical ICS system. Some of these are obvious, but others less so. By shedding light on the multitude of infection pathways, we hope that the designers and operators of industrial facilities can take the appropriate steps to make control systems much more secure from all threats.

    Tofino Security | Abterra Technologies | ScadaHacker.com
    02/28/2011
  • A Beginner's Guide to Optimizing Combustion of Fuels

    This guide discusses how best to optimize combustion efficiency in any application using combustion plant.

    Combustion optimization in some form or other has become an absolute necessity for all combustion processes. Optimization improves efficiency, reduces environmental impact, reduces maintenance requirements and increases the time between maintenance shutdowns. There are many types of application where combustion optimization will be a key requirement. These include:
    - Process heaters - the driver here is to increase throughput of feedstock, not necessarily fuel efficiency
    - Waste incinerators - waste throughput is the main driver but environmental impact also has to be considered
    - Steam raising, for power generation or other processes, pulp and paper, food and beverage etc, where fuel efficiency is the main driver

    In any of the above examples, poor control of the combustion process may ultimately lead to damage to the plant, with problems such as soot formation, hotspots and/or corrosion in the flue ducts, to name but a few. In each case, the incidence of such problems, especially if left unresolved, will result in increased maintenance expenditure and a reduction in the life cycle of the plant.

    Download now to learn more.

    ABB
    03/01/2011
  • 1 Gigabit Industrial Ethernet Field Network Delivers Determinism and Accommodates 10/100/1000 Mb TCP/IP Field Devices

    The continuing drive to improve productivity will encourage more automation networking. The driving factors behind this expected growth include lean working, increased traceability legislation, product lifecycle management production (PLM), and improvements in manufacturing cycle times. This requires connecting the factory floor to the corporate offices where enterprise resource planning (ERP) systems make information available backwards into the supply chain, as well as forward to customers. Simply put, everyone wants to see what's happening. As a result, networks and the information they handle are becoming as important as the industrial control functions they manage.

    This white paper describes the open CC-Link IE Field network, an Industrial Ethernet technology, which operates at 1 Gigabit/sec. This data rate is 10 times faster than other Industrial Ethernet technologies in order to provide highly responsive control system communications, while at the same time allowing connection to field devices (RFID readers, vision systems, etc.) that have TCP/IP Ethernet ports communicating at slower 10Mb or 100Mb data rates.

    CC-Link
    03/30/2011
  • Analysis of the ICONICS GENESIS Security Vulnerabilities for Industrial Control System Professionals

    A number of previously unknown security vulnerabilities in the ICONICS GENESIS32 and GENESIS64 products have been publically disclosed. The release of these vulnerabilities included proof-of-concept (PoC) exploit code.

    While we are currently unaware of any malware or cyber attacks taking advantage of these security issues, there is a risk that criminals or political groups may attempt to exploit them for either financial or ideological gain.

    The products affected, namely GENESIS32 and GENESIS 64 are OPC Web-based human-machine interface (HMI) / Supervisory Control and Data Acquisition (SCADA) systems. They are widely used in critical control applications including oil and gas pipelines, military building management systems, airport terminal systems, and power generation plants.

    Of concern to the SCADA and industrial control systems (ICS) community is the fact that, though these vulnerabilities may initially appear to be trivial, a more experienced attacker could exploit them to gain initial system access and then inject additional payloads and/or potentially malicious code. At a minimum, all these vulnerabilities can be used to forcefully crash system servers, causing a denial-of-service condition. What makes these vulnerabilities difficult to detect and prevent is that they expose the core communication application within the GENESIS platform used to manage and transmit messages between various clients and services.

    This White Paper summarizes the current known facts about these vulnerabilities. It also provides guidance regarding a number of possible mitigations and compensating controls that operators of SCADA and ICS systems can take to protect critical operations.

    Learn more about Tofino at www.tofinosecurity.com/blog

    Eric Byres, P. Eng., ISA Fellow, Joel Langill, CEH, CPT, CCNA, Tofino Security | SCADAhacker.com
    03/31/2011
  • Murphy's Law Consequences in Automation

    The most popular rendition of Murphy's Law is, "What can go wrong will, and at the worst possible time…" In today's automation world, we are building ever more complicated automation and management systems, designed to eek the last bit of quality and production performance our of our processes. We are creating some fertile ground for the production of future Murphy's Law crops. Minimizing these risks, from all perspectives - Automation Vendor, System Integrator, and End User, is essential to create solutions that will degrade gracefully to minimize downtime.

    Why am I writing about this now? Two Words - Hard Drive. As Baz Luhrmann once said in a commencement speech turned into "Sun Tan Song," "The real troubles in your life are apt to be things that never crossed your worried mind; the kind that blindside you at 4pm on some idle Tuesday." OK, in my case it was 3:15 on a Monday and I had to do a hard boot. That was it – "Drive not recognized." New Drive in hand, some software upgrades at the same time, backups that were out of date and a day later of loading, copying, recovering and I was 90% whole again, (not what the plant manager would want to hear, right?). A few shortcuts to get back on line quickly – Antivirus software can wait, documentation of the new system setup can wait, I won't forget to update that temporary license I got from my software vendor, to get back up and running… By now you're likely shaking your head saying Yup, I've been there… Oh, but it gets better. The next morning I wake up to a message saying there is a problem with the Operating System, and the system can't boot. Recover with a Boot Disk, scan the drive and there are bad clusters. The Bathtub Curve still exists…

    Roy Kok, AutomationSMX
    04/05/2011
  • Understanding Cable Assembly Molding

    While a molded cable assembly can offer significant advantages over a similar product of a mechanical construction, the art of insert molding remains somewhat of a mystery to cable assembly consumers. While attracted by the potential for a more aesthetically pleasing product that can be sealed from the environment and rendered 'tamper proof', the complexity of the insert molding manufacturing process is often over looked.

    Many cable assembly engineers who are consumers - but not producers - of molded assemblies are familiar to some degree with conventional molding. In this environment, the goal is the maximization of process speed which translates directly to bottom line financial performance. Manufacturing lot sizes are often characterized by long runs, where the same part is produced continuously over a considerable amount of time. The molding machines are usually horizontal in construction, use a closed cavity approach with auto-ejection of the finished parts, and operate at much higher injection pressures and speeds than an insert molding process. Additionally, the often uniform nature of the parts relative to wall thickness, balanced runner systems, and sufficient draft on the molded parts being produced serve to support consistent quality in the face of maximum manufacturing speed. The ability to optimize tool cooling, standardize mounting, and implement automated processes are also major differentiators between the conventional horizontal molding and vertical insert molding approaches. The result, all things equal, is a much higher production rate for finished parts in a conventional molding process.

    What then are the challenges of the insert molding process used to manufacture cable assemblies, and, more importantly, how are they met by the manufacturer? At a high level there are four major areas of consideration when discussing the intricacies of insert molding. These include the operator, tooling, equipment, and the process itself. Let's examine each of these in more detail.

    Operator: As with any non-automated process, it is the operator who is often the most important component of the success or failure of a manufacturing lot. This is especially true in cable assembly molding. In addition to knowing the basics of machine operation, the operator has several variables to properly monitor and control if he or she are to produce parts that meet the established design and quality guidelines. In light of some of the equipment and component variability discussed earlier, some of these operator focused considerations include...

    Mike Levesque, Shawn Young & Brock Richard, C&M Corporation
    04/05/2011
  • The Insider's Guide to Applying Miniature Solenoid Valves

    Equipment designers frequently must incorporate miniature solenoid valves into their pneumatic designs. These valves are important components of medical devices and instrumentation as well as environmental, analytical, and similar product applications. However, all too often, designers find themselves frustrated. They face compromise after compromise. Pressure for increasingly miniaturized devices complicates every step of the design and valve selection process. And missteps can wreak havoc. How do designers balance the needs for reliability, extended service life, and standards compliance against often-contradictory performance requirements such as light weight, high flow, and optimum power use?

    This report consolidates the expert views of designers and manufacturers with wide experience applying miniature solenoid valves for myriad uses across multiple industries. It presents a true insider's guide to which requirements are critical for common applications. It also highlights new valve technologies that may lessen or eliminate those troubling compromises.

    ASCO
    04/11/2011
  • Five Critical Factors for Selecting Fieldbus Valve Manifolds

    In today's highly automated machines, fieldbus valve manifolds are replacing conventional hardwired solutions. They more easily perform vital functions by integrating communication interfaces to pneumatic valve manifolds with input/output (I/O) capabilities. This allows programmable logic controllers (PLCs) to more efficiently turn valves on and off and to channel I/O data from sensors, lights, relays, individual valves, or other I/O devices via various industrial networks. The resulting integrated control packages can also be optimized to allow diagnostic benefits not previously available.

    Fieldbus valve manifolds from manufacturers such as Festo, SMC, and Numatics find wide utility in packaging, automotive/tire, and material handling applications, as well as in the pharmaceutical, chemical, water, and wastewater industries. They are specified for purchase by controls engineers at original equipment manufacturers (OEMs) who design and develop industrial automation solutions - as well as by end users in relevant industries.

    This paper presents controls engineers, specifiers, and buyers with new insights into five crucial factors they must consider before selecting pneumatic fieldbus valve manifolds - commissioning, distribution, modularity, diagnostics, and recovery - while also outlining some shortcomings of conventional approaches. Finally, it highlights new designs that offer substantial improvements in the application, performance, and maintenance of these valve manifolds from the end users’ and OEMs' points of view.

    Numatics, Enrico De Carolis
    05/12/2011
  • M2E (Machine to Enterprise) Integration Has Never Been Easier

    Are you taking advantage of it?

    Over the years, we've had sensor upgrades for process measurement, improved controllers for automation, HMI/SCADA installations for Operator visibility, Historians for data archiving and operational analytics, and now we have enterprise integration for improved material management, corporate agility, regulatory compliance and a host of other features. The manager makes the decision, and the engineer is saddled with a lot of work and stress. That work often rolls downhill, creating opportunity for System Integrators. We are all in an age where there is a technology abundance, leading to many ways to skin the cat. Have you researched all the alternatives? Are you up to speed with the latest tools to solve complicated enterprise integration?

    What does integration mean to you? It may mean sending data to your corporate database, enabling tools from Oracle, SAP and other enterprise vendors to report and analyze on it. The first step is usually to create an enterprise dashboard of KPIs (Key Performance Indicators). That should keep management happy for a while. But then, the focus will shift to even tighter integration. You'll want to close the loop on equipment, enabling data to flow from the enterprise back down to the equipment. How you accomplish all this is very much driven by your automation perspective. Will you control this from the Enterprise, or will you coordinate this from the plant floor.

    Roy Kok
    05/16/2011
  • Buyer Beware: SPD and UL Markings? Are You Buying or Selling the Right Product

    Significant changes have taken place regarding Surge Protection Devices and UL 1449. With the changes has come different product marking requirements to identify those testing and product changes. Manufacturers of SPD equipment have long been testing to UL 1449 but only recently have such significant changes taken place regarding a whole product categories testing and performance.

    An updated UL 1449 standard was released titled UL Standard for Safety for Surge Protective Devices, UL 1449 Third Edition, and was dated September 29, 2006. The result was that all manufacturers were required to retest their SPD products to ensure compliance before 9/29/2009.

    The easiest way to notice a new SPD product versus an older product that still may be in inventory is the new gold UL holographic label on the product. The new label must have the SPD and not TVSS which was used during the later part of UL 1449- 2 edition.

    Mersen
    05/24/2011
  • Surge-Trap: North America vs. Europe

    In this global business environment, it is common for manufacturers in North America to ship equipment to Europe. North America and Europe each have their own standards for Surge Protective Devices (SPD's) which makes understanding the differences in electrical system terminology very important. In North America, all SPD products are associated with UL 1449 3rd edition whereas in Europe, IEC 61643-1 is used to provide standards. Recently 1449 3rd edition adopted new terminology and testing criteria to be more congruent with IEC 61643-1. However, system voltages and the how they are defined differ between the two standards.

    Mersen
    05/24/2011
  • Understanding Ratings for Surge Protection Devices

    Selecting the appropriate Surge Protective Devices (SPD) can seem like a daunting task with all of the different types on the market today. The surge rating or kA rating of an SPD is one of the most misunderstood ratings. Customers commonly ask for an SPD to protect their 200A panel and there is a tendency to think that the larger the panel, the larger the kA device rating needs to be for protection As we will explore in this paper, this is a common misunderstanding.

    When a surge enters a panel, it does not care or know the size of the panel. So how do you know if you should use a 50kA, 100kA or 200kA SPD? Realistically, the largest surge that can enter a building's wiring is 10kA, as explained in the IEEE C62.41 standard. So why would you ever need a SPD rated for 200kA? Simply stated - for longevity.

    So one may think: if 200kA is good, then 600kA must be three times better, right? Not necessarily. At some point, the rating diminishes its return, only adding extra cost and no substantial benefit. Since most SPDs on the market use a metal oxide varistor (MOV) as the main limiting device, we can explore how/why higher kA ratings are achieved. If an MOV is rated for 10kA and sees a 10kA surge, it would use 100% of its capacity. This can be viewed somewhat like a gas tank, where the surge will degrade the MOV a little bit (no longer is it 100% full). Now if the SPD has two 10kA MOVs in parallel, it would be rated for 20kA. Theoretically, the MOVs will evenly split the 10kA surge, so each would take 5kA. In this case, each MOV have only used 50% of their capacity which degrades the MOV much less (leaving more left in the tank for future surges).

    Does this translate into surge "stopping power?" No, just because an SPD has 2 or 20 MOVs in parallel it does not mean it will limit the 10kA surge any better then a single SPD (of the same rating). The main objective of having MOVs in parallel is to increase the longevity of the SPD. Again, keep in mind that it is subjective and at some point you are only adding cost by incorporating more MOV’s and receiving little benefit.

    As mentioned before, panel size does not really play a role in the selection of a kA rating. The location of the panel within the facility is much more important. IEEE C62.41.2 defines the types of expected surges within a facility as:
    Category C: Service Entrance, more severe environment: 10kV, 10kA surge
    Category B: Downstream, greater than 30' from category C, less severe environment: 6kV, 3kA surge
    Category A: Further downstream, greater than 60' from category C, least severe environment: 6kV, 0.5kA surge

    How do you know what kA rating to use? The IEEE categories provide a good base for selecting kA ratings. There are many "right" sizes for each category but there needs to be a balance between redundancy and added cost. Qualified judgment should always be used when selecting the appropriate kA rating for an SPD.

    Mersen
    05/24/2011
  • What Is the Surge-Trap SPD?

    The Surge-Trap is a branded surge protection device (SPD)that utilizes Mersen's patented thermally protected metal oxide varistor (TPMOV) technology. This technology eliminates the need for fuses to be installed in series with the Surge-Trap SPD.

    which saves money and panel space. Surge-Trap SPD is typically installed in industrial control panels to protect sensitive electrical equipment from harmful voltage transients. Nearly 80% of all transients are caused by equipment or power disturbances within a facility.

    What Types of Ratings Do SPDs Have?
    Do SPDs have a current rating? This is a trick question! They do not have a continuous current rating however they do have other important current-based ratings. They are required to have a short circuit current rating (SCCR), which is the maximum rms current at a specified voltage the SPD can withstand.

    The nominal discharge current (In) is new to UL 1449 Third Edition (effective 9/29/09). This is the peak value of the current (20kA maximum) through the SPD (8/20μs waveform) where the SPD remains functional after 15 surges.

    There are two main voltage ratings for an SPD, the first is maximum continuous operating voltage (MCOV) which is the maximum rms voltage that may be applied to the SPD per each connected mode.

    Voltage protection rating (VPR) is determined as the nearest high value (from a list of preferred values) to the measured limiting voltage determined during the transient-voltage surge suppression test using the combination wave generator at a setting of 6kV, 3kA.

    How Do I Select The Correct SPD?

    Mersen
    05/24/2011
  • Is There a One Size Fits All SPD?

    Frequently, our customers will ask for a "one size fits all" Surge Protective Device (SPD), eliminating the need to stock several different part numbers to meet their customers needs. Some manufactures claim to have a one size fits all Surge Protection Device (SPD), however there is absolutely no benefit of this to the end user. Why? The one size fits all approach could in most cases actually cause damage to the equipment it should be protecting.

    Mersen
    05/24/2011
1-20 of 31 < first | prev | | last >