White Papers

461-480 of 1202 < first | | | last >
  • Process Control Domain - Security Requirements for Vendors

    This document specifies requirements and gives recommendations for IT security to be fulfilled by vendors of process control and automation systems to be used in Process Control Domains (PCDs).

    This covers both:
    - Policy; addressing the vendor's organization, IT security processes, technological solutions and governance of IT security.
    - Commissioning and maintenance

    When a vendor's solution complies with this set of requirements, the solution is considered by the WIB to be PCD Security Compatible.

    Download this paper to learn more.

    WIB
    04/07/2010
  • Achieving Next-Generation Connectivity

    Industrial-strength Ethernet, bolstered by its wireless component, is giving facilities the tools they need to operate lean and mean and succeed in an uncertain economy. As companies seek to identify and eliminate waste, continually improve processes, and respond to the increasing product demands of its customers, they are learning to do more with less, whether it is resources, staff, or money. This white paper examines some reasons and factors influencing the success of the Ethernet infrastructure, while looking at the accelerating presence of its wireless component.

    Belden
    04/06/2010
  • Advanced Process Control: Quick and Easy Energy Savings

    In today's manufacturing environment, there is an urgency to increase operating efficiencies, and to do it quickly. One area of improvement that can produce immediate results is reducing energy consumption. It's good for the environment and it's good for the bottom line. "Energy management," therefore, has become a common best practice, but there is more there than meets the eye. Typically it implies rigorously modeling all or a major portion of the plant, coupled with the use of real-time optimization technology. While this approach has been used successfully, there are other simpler, faster options for reducing energy consumption in a manufacturing plant. Learn what these options are.

    Paul Kesseler, Manager, Advanced Process Control Practice, Global Consulting Group, Invensys Operations Management
    03/25/2010
  • One Code to Save Millions: ASME Codes and Standards Guide Dominion in Efficiency, Cost Savings and Safety

    In order to stay on track with technology and provide the safest and most efficient working environment at Dominion's nuclear power plants, Dominion follows the codes and standards developed by ASME. ASME's mission is for its Standards & Certification organization "to develop the preeminent, universally applicable codes, standards, conformity assessment programs, and related products and services for the benefit of humanity." These codes and standards have a significant impact on the industry and save companies millions of dollars per year as well as assist in accident prevention and the development of more efficient production and operational practices. This case study illustrates how ASME has helped Dominion become more efficient, increasing cost savings and improving safety measures.

    ASME
    03/25/2010
  • Convergence and the Programmable Automation Controller

    Ensuring your PAC-based control system is an integrated, robust and flexible information producer helps improve business performance, lower costs and uncover unique opportunities for competitiveness.

    All companies seek ways to make their businesses grow for the long-term. Ask any manufacturer today what he/she needs in an increasingly challenging economy. It's likely to include cutting costs, improving yield, increasing functionality and becoming more competitive in the global marketplace.

    Manufacturing convergence helps companies meet these business drivers - globalization, innovation, productivity and sustainability - by more closely aligning manufacturing technologies and production system operations with the rest of the enterprise. This convergence is enabled throughout the manufacturing environment with the technologies of convergence - control, power, information and communication.

    Rockwell Automation
    03/24/2010
  • Maintenance and Calibration of HART Field Instrumentation

    The field instrumentation in process plants is beginning to come under more sophisticated metrological discipline. Most new field instruments are now smart digital instruments. One popular digital protocol is the HART (Highway Automated Remote Transducer) protocol, which shares characteristics of both analog and digital control systems.

    This white paper talks about the maintenance and calibration of HART field instruments. To properly service these instruments, precision analog source/measure capability and digital communication are both required. In the past, this operation required two separate tools-a calibrator and a communicator. Now these capabilities are available in one HART documenting process calibrator. Download this white paper to learn more.

    Richard Pirret, Fluke Corporation
    03/23/2010
  • Hazardous Area Classifications and Protection Methods

    This paper describes what the hazardous area classifications are and what specific protection methods truly mean. It will demystify the common third party approvals. This paper will also include how and when you can use a specific approval rating as well as what is and is not required to be supplied.

    Class who? Division where? Group what?
    This paper is intended to demystify third party approvals. Included is information addressing what the common hazardous area classifications are for a facility and what a specific protection method truly means. It also includes how and when you can use a certain approval rating as well as what the instrument supplier is and is not required to supply.

    First, let's begin with definitions of the various Class, Divisions and Groups you will likely encounter.

    Endress+Hauser
    03/23/2010
  • Setting a New Standard in Alarm Management

    Alarm management affects the bottom line. A well-functioning alarm system can help a process run closer to its ideal operating point - leading to higher yields, reduced production costs, increased throughput and higher quality, all of which add up to higher profits. Poor alarm management, on the other hand, is one of the leading causes of unplanned downtime and has been a major contributor to some of the worst industrial accidents on record. Changing the practices and procedures used in the plant has become easier and more important with the release of a new ISA standard on alarm management. The ISA-18.2 standard, which provides a blueprint for creating a safer and more productive plant, is expected to be adopted by OSHA and insurance agencies as "good engineering practice." Download this white paper to see an overview of the new standard, examples of how to follow it and more.

    Siemens
    03/22/2010
  • Predicting Control Valve Noise in Gas and Steam Applications: Valve Trim Exit Velocity Head vs. Valve Outlet Mach Number

    Predicting and managing control valve noise has long been an important consideration in gas and steam applications, with the dual goals of protecting workers from potential auditory damage and preventing excessive vibration that could destroy equipment and piping, possibly leading to a catastrophic failure.

    At first glance, it may seem that a logical way to achieve these goals would be to limit valve trim exit velocity head to a maximum of 480 kilopascals (kPa), and this indeed is how some have addressed the issue. In practical application, however, it is an oversimplified approach that, in many cases, will not produce the desired results. First, it typically requires the use of expensive multi-stage or multi-turn trim designs, which can cost up to 30 percent more than a simpler solution. More importantly, it also can create a false sense of safety.

    This article will explain why the focus should instead be on keeping the valve outlet Mach number low. Practical examples will be used to illustrate that:
    - Even if the trim exit velocity head is kept below 480 kPa, valve noise can be unacceptably high if the valve outlet Mach number is high.
    - Even if the trim exit velocity number is above 480 kPa, valve noise can be kept to acceptable levels - without using costly trim designs - if the valve outlet Mach number is kept low.

    Joseph Shahda, Dresser Masoneilan
    03/18/2010
  • Finding the Root Cause of Process Upsets

    Today's process plant is a complicated place. Multiple raw materials combine with multiple energy streams to produce primary and secondary products. Process variability comes from the raw materials, operating practices, weather, process upsets, maintenance issues and hundreds of other sources. Finding the root cause of a process upset is critically important to permanently solving process upsets. Trying to tune all the affected control loops is simply chasing after symptoms, rather than getting to the heart of the issue. Download this paper to learn how to pinpoint the root cause of problems in process plants.

    Expertune
    03/16/2010
  • Introduction to Vibration

    Vibration is a characteristic of virtually all industrial machines. When vibration increases beyond normal levels, it may indicate only normal wear, it may signal the need for further assessment of the underlying causes, or for immediate maintenance action. But how can the plant maintenance professional tell the difference between acceptable, normal vibration and the kind of vibration that requires immediate attention to service or replace troubled equipment? Download this white paper and learn how to tell this difference.

    Fluke Networks
    03/16/2010
  • Optimized Performance Throughout System Life Cycle with Integrated Safety Systems

    Amidst the continued heated discussion on the pros and cons of integrated safety systems market demand - driven by the pursuit of reduced cost, operational excellence and engineering efficiencies - continue to fuel the inevitable integration efforts. This white paper will discuss integrated safety system solutions.

    ABB
    03/10/2010
  • Ethernet in Harsh Environments

    Ethernet is the most prevalent LAN application worldwide, offering the benefits of standardization, low-cost components, and high-performance switching technology. It's easy to configure and install. Ethernet has migrated from the office environment onto the factory floor for automation and industrial control. However, while there are many similarities between corporate and industrial Ethernet networks, there are crucial differences a system integrator should know of. Download this white paper to learn how you can assess the three most important areas in Ethernet networks: the network, electrical signals and cabling infrastructure.

    Fluke
    03/09/2010
  • 10 Essential Technologies for High-Performance Motion Control

    Motion controllers have incorporated key technologies over the years to meet the increasing demands of high-performance applications such as profile cutting and wafer inspection. This document covers the top 10 key technologies that impact your high-performance motion control applications.

    National Instruments
    03/09/2010
  • Video Analytics and Security

    Using video data to improve both safety and ROI.

    Most companies are gathering trillions of bytes of data, day after day, at no small cost, and then doing very little with it. Worse still, the data often is not serving its primary function very cost-effectively.

    The "culprit," so to speak, is video surveillance data, the information captured by the video cameras that are used throughout most modern facilities.

    But the situation is changing rapidly, thanks to an application called Video Analytics. This white paper looks at the new software technology, and how it can be used to leverage video data for better security and business performance.

    Schneider Electric
    03/05/2010
  • Making Permanent Savings Through Active Energy Efficiency

    This white paper argues strongly that meeting greenhouse gas emissions targets set within the Kyoto Protocol will fail unless Active Energy Efficiency becomes compulsory.

    Active Energy Efficiency is defined as effecting permanent change through measurement, monitoring and control of energy usage. Passive energy efficiency is regarded as the installation of countermeasures against thermal losses, the use of low consumption equipment and so forth.

    It is vital, but insufficient, to make use of energy saving equipment and devices such as low energy lighting. Without proper control, these measures often merely militate against energy losses rather than make a real reduction in energy consumed and in the way it is used.

    Everything that consumes power - from direct electricity consumption through lighting, heating and most significantly electric motors, but also in HVAC control, boiler control and so forth - must be addressed actively if sustained gains are to be made. This includes changing the culture and mindsets of groups of individuals, resulting in behavioral shifts at work and at home, but clearly, this need is reduced by greater use of technical controls.

    Schneider Electric
    03/05/2010
  • Growing a Green Corporation

    Meeting the next great disruptive challenge of the 21st century.

    Since the Industrial Revolution our society has been driven by an increasing pace of change in business and technology. Every decade or two we have faced a new and disruptive event that challenges business and creates opportunities-the locomotive, the electric light, the automobile, the airplane, the television and the computer, to name a few.

    But the greatest disruptive event of the next 20 years may come, not from a single invention, but from the world around us-that is, climate change.

    How your business responds to the climate challenge can either differentiate you from the competition and launch new and successful products, or make you the focus of consumer backlash and eroding margins.

    This paper will explore the environment as a disruptive force in business, examine the consequences of inaction, and propose the benefits of a proactive environmental policy. It will describe increasing levels of investment that a small company, an enterprise or an industry can make to address the challenge and develop a business case. The paper ends with a concrete roadmap to lead you from today's "business as usual" to a long-term sustainable approach to growing a Green corporation.

    After reading this paper, business leaders in every industry will have an understanding of how the environment will impact their business, how to make changes to mitigate the negative impacts and how to explore business opportunities in this new and exciting sustainable world.

    Schneider Electric
    03/05/2010
  • Personnel Functional Safety Certification: Not All Programs Are Created Equal

    As production runs ever closer to equipment and facility operating limits and new plants come on line in expanding and developing economies, the pressure to design and operate systems more safely and economically is increasing. A key to meeting this goal is having competent people who are knowledgeable and experienced in applying the IEC 61508 and IEC 61511 / ISA 84 functional safety standards. To develop and measure an individual's safety engineering competence, several personnel functional safety certification programs have been created. This paper will discuss why these programs are needed and the benefits they deliver to individuals and companies alike. It will also review the characteristics and differences of the various certification programs on the market today, things to watch out for, and some important questions to ask when selecting a certification program.

    Exida
    03/05/2010
  • Compliance Testing and Certification

    Moore Industries believes it is of vital importance to have third-party SIS evaluation for plant safety provided by a company with global coverage and reputation. Earlier designs for process control and safety systems typically used "good engineering practices and experience" as their guidelines. As safety awareness evolved new standards started to evolve. International standards such as IEC 61508/61511 and U.S. born standards like ANSI/ISA84 require the use of more sophisticated guidelines for implementing safety. Unfortunately for manufacturers, compliance with IEC 61508 standards requires enormous documentation. In addition, more complex products require a greater depth of analysis. Software-based products such as those from Moore Industries are complex with their inherent programmable and flexible features unlike previous generation single function analog circuits.

    Some companies are actively attempting to bypass the vital third party certification by proclaiming self certification to IEC 61508. This is not in the best interest of end users or the safety industry in general. Self certification is analogous as someone proclaiming compliance without third party testing on a hazardous area approval (such as Intrinsically-Safe).

    Moore Industries has been working for many years with customers who require products for safety systems, including those compliant with worldwide safety standards such as ANSI/ISA 84 and IEC 61508/61511. To assist customers in determining if their instruments are appropriate for specific safety systems, Moore Industries has been providing Failure Modes, Effects and Diagnostic Analysis (FMEDA) reports for key products, and has been involved in the evolution of the IEC 61508 standard. As this standard has become more widely recognized and adopted by worldwide customers it was clear that end users were looking for products which had been designed to IEC 61508 from their initial concept. Customers are demanding not only compliance to the standards but verification from an independent third party agency such as TUVRheinland.

    Moore Industries
    03/03/2010
  • Plant Modeling: A First Step to Early Verification of Control Systems

    Today's control system engineers face competing design demands: increase embedded system performance and functionality, without sacrificing quality or breaking the budget. It is difficult to meet these challenges using traditional design and verification approaches.

    Without simulation it is impossible to verify a control design until late in the development process when hardware prototypes become available. This is not an insurmountable problem for simpler designs with predictable system behavior, because there are fewer sources of error in simpler control algorithms--and those errors can often be resolved by tuning the controller on the hardware prototype.

    Today's multidomain designs combine mechanical, electrical, hydraulic, control, and embedded software components. For these systems, it is no longer practical to delay verification until late in the development process. As system complexity grows, the potential for errors and suboptimal designs increase. These problems are easiest to address when they are identified early in the development process. When design problems are discovered late, they are often expensive to correct and require time-consuming hardware fixes. In some cases the hardware simply cannot be changed late in the development process, resulting in a product that fails to meet its original specifications.

    Traditional verification methods are also inadequate for testing all corner cases in a design. For some control applications, it is impractical or unsafe to test the full operating envelope of the system on hardware.

    Arkadiy Turevskiy, Technical Marketing Manager, The MathWorks
    03/02/2010
461-480 of 1202 < first | | | last >