I/O on Demand: The New Paradigm

One of the Goals of Human-Centered Design Is to Eliminate Unnecessary Work

1 of 2 < 1 | 2 View on one page

Ever since the first direct digital control system was applied some half-century ago, input/output (I/O) has been essential to process automation system architecture. And for just as long, the engineering of that I/O has been complex, and the fruits of that labor rigid and inflexible.

First, take the specification of conventional rack-mounted I/O cards, each of which uses shared circuitry to deal with a specific number of similar input or output channels. Then add to that the design of associated controllers, marshalling cabinets, junction boxes and wire runs, and it's no surprise that the typical project incurs significant change-order expenses as inevitable late-stage design tweaks wreak havoc on delivery schedules.

Foundation fieldbus and other bus technologies essentially moved some I/O functionality out into the field devices themselves—easing the need for conventional I/O—but fieldbus segments are complex, and little reduction in engineering effort has been realized relative to conventional I/O practices.

The American Heritage Dictionary defines paradigm as "a set of assumptions, concepts, values and practices that constitutes a way of viewing reality for the community that shares them."  And in the case of I/O, the prevailing paradigm is that I/O is hard; I/O is inflexible.

But what if it wasn't so difficult? What if constant revisions to I/O specs didn't hamstring your project schedule? What if existing I/O spares didn't limit your ability to deploy new measurement points? What if I/O was more readily available, in any flavor needed, anywhere you needed it, and at any stage during a project—even after you're up and running?

That's the essential value proposition of I/O on Demand, Emerson Process Management's new way of thinking about I/O.

The Process Landscape

To better understand the genesis of the I/O on Demand offering, it's useful to first consider the broader context of the process industries and the increasingly global business environment in which they compete.

Across the process industries, sustainability and related environmental concerns show no sign of abating, especially as they relate to conserving increasingly expensive energy and limiting greenhouse gases. New regulations are being extended to include the protection of personnel and equipment. Control system security also is becoming more important, as the perceived threat of cyber incidents mounts.

Meanwhile, increasing scale and complexity constitute a growing challenge. On the one hand, plants are getting larger. Petrochemical plants, for instance, have become petrochemical complexes. This makes sense for efficiency reasons, but the entire operation becomes more complex because of unit interdependencies. Projects, too, are getting bigger and schedules are getting compressed. Hence more engineering work is getting pushed onsite for completion, sometimes with a marked effect on final project timing, cost and quality.

Against this backdrop are a record number of industry professionals at retirement age, who as they leave are taking a wealth of experience with them. Further, some industries are pursuing strategic workforce reductions. Centralized facilities, for example, are being developed in order to move more people out of hazardous or unsafe areas. The oil and gas industry is particularly adept at creating unmanned facilities, so when someone is sent onsite to troubleshoot, a true generalist—not a specialist—is required. And in growth markets, plants often are being built where there is essentially no ready-trained work force. Further complicating matters, few experienced people are interested in relocating to these remote locales.

So, we're left with fewer, less experienced people dealing with ever more complex processes and technologies. "It's a perfect storm," said Steve Sonnenberg, Emerson Process Management CEO, in his keynote address to the Emerson Global Users Exchange late last year in Orlando as he prepared to unveil the latest iteration (version 11) of the company's DeltaV digital automation system, the S-series.

From HCD to 'I/O on Demand'

Emerson Process Management decided some years ago that human-centered design (HCD) had to be a major part of the answer to this conundrum and set out to ensure that its process automation offering helps to accomplish three primary goals: eliminate work (where possible), reduce complexity for its users (let technology do the hard part), and embed knowledge (where needed).

"Frankly, automation suppliers have not designed products built around the actual ways projects are executed and the ways plants are run," says Sonnenberg. "Advancing products features is important, but designing products around how people use them is critical."

Task analysis, notes Peter Zornio, Emerson chief strategic officer, confirms that automation design is engineering-intensive (Figure 1). "That's all work," he says, "and one of the goals of HCD is to eliminate unnecessary work."

I/O on Demand (Figure 2) is essentially the result of Emerson's HCD development approach applied to I/O. It consists of a collection of new technologies as well as a range of HCD improvements all aimed at affording customers the greatest degree of flexibility in their I/O decisions with the least amount of effort and risk. 
"I/O on Demand is 'what you want, where you want it, when you want it,'" continues Zornio. "This is an automation breakthrough that eliminates the intensive pre-engineered work associated with I/O."

1 of 2 < 1 | 2 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments