CHAPTER 1: General Considerations

1.1.1 Introduction
1.1.2 Abbreviations
1.1.3 Flowsheet Symbols and Preparation of P&I Diagrams
 (1.1.4 and 2.7.11) JJ
1.1.4 Binary Logic Diagrams (1.1.5 – RGil)
1.1.5 Redundant and Voting Systems (1.1.3)
1.1.6 Instrument Terminology and Performance (1.1.1)
1.1.7 Instrument Evaluation (1.1.6)
1.1.8 System Accuracy and Measurement Uncertainty (1.1.2 – RDie)
1.1.9 On-Line Calibration and Response Time Testing (HHas)
1.1.10 SAMA (Scientific Apparatus Makers Association) Standards
1.1.11 Instrument Installation
1.1.12 Instrument Calibration
1.1.13 Checking the Configuration of Smart Devices
1.1.14 Instrument Maintenance and Calibration (schedule for prevention, spare inventory, workshop and calibration rigs)
CHAPTER 2: Flow Measurement

1.2.1 Application and Selection (Including Special Applications such as multi-phase or high viscosity, etc.) (1.2.1)
1.2.2 Accuracy, the Effects of Installation and Flow Conditioning (APaw)
1.2.3 BTU Flowmeters for Heat Exchangers (1.2.2)
1.2.4 BTU Flowmeters for Gaseous Fuels (1.2.3)
1.2.5 Cross-Correlation Flowmetering (1.2.4 – HHas)
1.2.6 Custody Transfer and Reticulation Meters
1.2.7 Elbow Taps (1.2.5)
1.2.8 Flow Switches (1.2.6 – WBoy)
1.2.9 Jet Deflection Flow Detectors (1.2.7)
1.2.10 Laminar Flowmeters (1.2.8 – JArant)
1.2.11 Magnetic Flowmeters (1.2.9 – HEren)
1.2.12 Mass Flowmeters-Corioli (1.2.10 – CRoh)
1.2.13 Mass Flowmeters—Miscellaneous (incl. vortex-based)
 (1.2.11 – Apat, JGOlin)
1.2.14 Mass Flowmeters—Thermal (incl. thermal dispersion)
 (1.2.12 – TBaan)
1.2.15 Metering Pumps (1.2.13 – WBoy)
1.2.16 Multiphase Flow Metering (JArant)
1.2.17 Orifices (1.2.14)
1.2.18 Pitot Tubes, Averaging and Duct Section Units (1.2.15)
1.2.19 Polyphase (oil/water/gas) meters
1.2.20 Positive Displacement Gas Flowmeters (1.2.16)
1.2.21 Positive Displacement Liquid Meters and Provers
 (1.2.17)
1.2.22 Purge Flow Regulators (1.2.18)
1.2.23 Segmental Wedge Flowmeter (1.2.19)
1.2.24 Sight How Indicators (1.2.20 - GSa)
1.2.25 Solids Flowmeters and Feeders (1.2.21)
1.2.26 Target Meters (1.2.22 – WBoy)
1.2.27 Turbine and Other Rotary Element Flowmeters, incl.
 Dual Rotor Designs (1.2.23 - JAr)
1.2.28 Ultrasonic Flowmeters (incl. Multipath, Transit Time
 and Doppler) (1.2.24)
1.2.29 Variable-Area, Gap and Vane Flowmeters (1.2.25 – TBaan)
1.2.30 V-Cone Flowmeter (1.2.26 – WBoy)
1.2.31 Venturi Tubes, Flow Tubes, and Flow Nozzles (1.2.27 – JArant)
1.2.32 Vortex and Fluidic Flowmeters (1.2.28 – WBoy)
1.2.33 Weirs and Flumes (1.2.29 – APaw)

CHAPTER 3: Level Measurement
1.3.1 Application and Selection (Including Special
Applications Like Multi-phase, Foaming, etc. and
Topics such as Elevation, Suppression, etc.) (1.3.1)
1.3.2 Bubblers (1.3.2 – Gmll, CLang)
1.3.3 Capacitance and Radio Frequency (RF) Admittance
Probes (1.3.3 – GSa)
1.3.4 Conductivity and Field-Effect Level Switches (1.3.4)
1.3.5 Diaphragm Level Detectors (1.3.5)
1.3.6 Differential Pressure Level Detectors (1.3.6 – GMill)
1.3.7 Displacer Level Detectors (1.3.7 – CLang)
1.3.8 Float Level Devices (1.3.8 – CLang)
1.3.9 Laser Level Sensors (1.3.9)
1.3.10 Level Gauges (1.3.10 – GSa)
1.3.11 Microwave Level Switches (1.3.11)
1.3.12 Optical Level Devices (1.3.12 – GSa)
1.3.13 Radar Level Transmitters and Gauges (1.3.13)
1.3.14 Radar, Guided Wave (TDR) Designs (BCars)
1.3.15 Radiation Level Sensors (Incl. Topics of Licensing,
Custody, Tracking, Disposal, etc. (1.3.14 – Aliv,
KCarm)
1.3.16 Resistance Tapes (1.3.15)
1.3.17 Rotating Paddle Switches (1.3.16)
1.3.18 Slip Tubes and Dipsticks (1.3.17)
1.3.19 Tape Level Devices (1.3.18)
1.3.20 Thermal Level Sensors (1.3.19)
1.3.21 Time Domain Reflectometry and Phase Difference
Sensors(1.3.20)
1.3.22 Ultrasonic Level Detectors (1.3.21 - GSa)
1.3.23 Vibrating Level Switches (1.3.22 - GMill)

CHAPTER 4: Temperature Measurement
1.4.1 Application and Selection, incl. for Rotating Machinery
(1.4.1 – FJohn, LMoore)
1.4.2 Bimetallic Thermometers (1.4.2 – JJ)
1.4.3 Calibrators and Simulators (1.4.3 -- JJ, FJohn, LMoore)
1.4.4 Color Indicators, Crayons, Pellets (1.4.4 – JJ
1.4.5 Fiber-Optic Thermometers (1.4.5)
1.4.6 Filled-Bulb and Glass-Stem Thermometers (1.4.6)
1.4.7 Integrated Circuitry (IC) Transistors and Diodes (1.4.7)
1.4.8 Miscellaneous Temperature Sensors (1.4.8 – Fjohn)
1.4.9 Pneumatic and Suction Pyrometers (1.4.9)
1.4.10 Pyrometric Cones (1.4.10)
1.4.11 Radiation and Infrared Pyrometers (1.4.11)
1.4.12 Quartz Crystal Thermometry (1.4.12)
1.4.13 Resistance Temperature Detectors (RTDs)
CHAPTER 5: Pressure Measurement

1.5.1 Selection and Application (Incl. Compensation for Atmospheric Pressure Variations) (1.5.1)
1.5.2 Accessories: Seals, Snubbers, Calibrators and Manifolds (1.5.2)
1.5.3 Bellows-Type Pressure Sensors (1.5.3) JJ
1.5.4 Bourdon and Helical Pressure Sensors (1.5.4) JJ
1.5.5 Diaphragm or Capsule-Type Sensors (1.5.5)
1.5.6 Differential Pressure Instruments (1.5.6)
1.5.7 Electronic Pressure Sensors (1.5.7)
1.5.8 Fibre Optic Pressure Sensors
1.5.9 High-Pressure Sensors (1.5.8)
1.5.10 Manometers (1.5.9)
1.5.11 Multiple Pressure Scanners (1.5.10)
1.5.12 Pressure Gauges (1.5.11) JJ
1.5.13 Pressure Repeaters (1.5.12)
1.5.14 Pressure and Differential Pressure Switches (1.5.13)
1.5.15 Vacuum Sensors (1.5.14 – RGil)
1.5.16 Pressure Sensing Lines (HHas)

CHAPTER 6: Density Measurement

1.6.1 Application and Selection (1.6.1) JJ
1.6.2 Liquid Density-Displacement and Float-Type Densitometers (1.6.2) JJ
1.6.3 Liquid Density-Hydrometers
1.6.4 Liquid Density-Hydrostatic Densitometers (1.6.4)
1.6.5 Liquid/Slurry Density-Miscellaneous Densitometers (1.6.5)
1.6.6 Liquid Density-Oscillating Coriolis Densitometers (1.6.6)
1.6.7 Liquid/Sludge Density-Radiation Densitometers (1.6.7 – ALiv)
1.6.8 Liquid/Slurry/Gas Density—Vibrating Densitometers
CHAPTER 7: Safety and Miscellaneous Sensors
1.7.1 Anemometer (1.7.1)
1.7.2 Aviation Instruments
1.7.3 Boroscopes (1.7.2)
1.7.4 Electrical and Intrinsic Safety (1.7.3 – JTate)
1.7.5 Conveyor Belt Rip, Side Travel, Underspeed, Metals Sensors
1.7.6 Electrical Meters and Sensors (1.7.4)
1.7.7 Energy Management Devices (Peak Load Shedding) (1.7.5)
1.7.8 Excess Flow Check Valves (1.7.6)
1.7.9 Explosion Suppression and Deluge Systems (1.7.7 – DMil)
1.7.9A Fiber Optics in Hazardous Areas (JTate)
1.7.10 Flame Arresters, Conservation Vents and Emergency Vents (1.7.8 – DMil)
1.7.11 Flame, Fire, and Smoke Detectors (incl. scanners and incl. standards for location, installation) (1.7.9 – EM)
1.7.12 Leak Detectors (1.7.10)
1.7.13 Linear or Angular Position and Angular Speed
1.7.14 Machine Vision Technology (MReed)
1.7.15 Metal Detectors (1.7.11)
1.7.16 Motion Detectors
1.7.17 Navigation Instruments
1.7.17A Neutron Sensors (HHas)
1.7.18 Noise Sensors (1.7.12)
1.7.19 Proximity Sensors and Limit Switches (1.7.13)
1.7.20 Relief Valves—Determination of Required Capacity (1.7.14)
1.7.21 Relief Valves—Features and Sizing (1.7.15)
1.7.22 Rupture Discs (1.7.16 – DMil)
1.7.23 Space Exploration Instruments
1.7.24 Speed Detectors (incl. Angular Speed), Tachometers (1.7.17)
1.7.25 Thickness and Dimension Measurement (1.7.18)
1.7.26 Torque and Force Transducers (1.7.19)
1.7.27 Vibration, Shock, and Acceleration (1.7.20)
Weather Station (1.7.21)

CHAPTER 8: Weight Measurement
1.8.1 Weighing-General Considerations (1.7.22 – HHer)
1.8.2 Weighing—Mechanical, Hydraulic, Pneumatic
 (1.7.23 – HHer)
1.8.3 Weighing-Electronic Load Cells (1.7.24 – HHer)

CHAPTER 9: Analyzers
1.9.1 Analyzer Application and Selection (1.8.1)
1.9.2 Analyzer Sampling-Process Samples (1.8.2– SStap)
1.9.2a Analyzer Sampling – Gas Samples (Dleig)
1.9.3 Analyzer Sampling-Stack Particulates in Gas Samples (1.8.3 – Dleig)
1.9.4 Analyzer Replacement by Using Soft Sensors
1.9.5 Air Quality (Pollution) Monitoring (1.8.4)
1.9.6 Biomedical Instruments and Biometers (1.8.5)
1.9.7 Biochemical Oxygen Demand (BOD), (COD), and
 (TOD) (1.8.6 – JTate)
1.9.8 Calorimeters (1.8.7)
1.9.9 Carbon Dioxide (1.8.8)
1.9.10 Carbon Monoxide (1.8.9)
1.9.11 Chlorine (1.8.10 –BSalt)
1.9.12 Chromatographs-Gas (1.8.11) (SStap, RAIn)
1.9.13 Chromatograph-Liquid (1.8.12)
1.9.14 Coal Analyzer (1.8.13)
1.9.15 Colorimeters (incl. On-line Reflectance types) (1.8.14 – MReed)
1.9.16 Combustibles (1.8.15 – JTate)
1.9.17 Conductivity Analyzers (1.8.16 – JGray, SStap)
1.9.18 Consistency Analyzers (1.8.17) (MHW)
1.9.19 Corrosion Monitoring (1.8.18)
1.9.20 Differential Vapor Pressure Sensor (1.8.19)
1.9.21 Dioxin Analysis (1.8.20)
1.9.22 Elemental Monitors (1.8.21)
1.9.23 Fiber-Optic Probe (1.8.22 – MReed)
1.9.24 Fluoride Analyzers (1.8.23 – JGray)
1.9.25 Hydrocarbon Analyzers (1.8.24)
1.9.26 Hydrogen Sulfide (1.8.25)
1.9.27 Infrared Analyzers (Incl. IR, FT-IR, NIR, FT-NIR
 (1.8.26 – SStap)
1.9.28 Ion-Selective Electrodes (1.8.27 – JGray)
1.9.29 Mass Spectrometers (1.8.28 – RGil)
1.9.30 Mercury in Air (1.8.29 – BSalt)
1.9.31 Mercury in Water (1.8.30)
1.9.32 Moisture in Air: Humidity and Dew Point (1.8.31)
1.9.33 Moisture in Gases and Liquids (1.8.32 – JTate)
1.9.34 Moisture in Solids (1.8.33 – MReed)
1.9.35 Molecular Weight (1.8.34)
1.9.36 Nitrate, Ammonia, and Total Nitrogen (1.8.35)
1.9.37 Nitrogen Oxide Analyzers (1.8.36)
1.9.38 Odor Detection (1.8.37)
1.9.39 Oil In or On Water (1.8.38 – JTate)
1.9.40 Open Path Spectrometry (IR, FT-IR, UV) (JTate)
1.9.41 Oxidation-Reduction Potential (ORP) (1.8.39)
1.9.42 Oxygen in Gases (1.8.40 – JTate)
1.9.43 Oxygen in Liquids (Dissolved Oxygen) (1.8.41)
1.9.44 Ozone in Gas (1.8.42)
1.9.45 Ozone in Water (1.8.43)
1.9.46 Particulates, Opacity, Dust, and Smoke
 (1.8.44 – JGroe)
1.9.47 Particle Size and Distribution Monitors
 (Optical, Ultrasonic, Sedimentation, Obscuration)
 (1.8.45 – JTate)
1.9.48 pH Measurement (1.8.46 – JGray, SStap)
1.9.49 Phosphorus Analyzer (1.8.47)
1.9.50 Physical Properties Analyzers—ASTM Methods
 (1.8.48 – MReed)
1.9.51 Raman Spectroscopy (THal, SStap)
1.9.52 Refractometers (1.8.49 – JGroe)
1.9.53 Rheometers (Thal)
1.9.53A Safety of Analyzer Housings
1.9.54 Streaming Current or Particle Charge Analyzer
 (1.8.50)
1.9.55 Sulfur-in-Oil Analyzers (1.8.51 – SStap)
1.9.56 Sulfur Oxide Analyzers (1.8.52)
1.9.57 Textile Property Measurements (MReed)
1.9.58 Thermal Conductivity Detectors (1.8.53)
1.9.59 Total Carbon Analyzers (1.8.54) (MHW, JTate, BBooth, RLang, TLA)
1.9.60 Toxic Gas Monitoring (1.8.55)
1.9.61 Turbidity, Sludge, and Suspended Solids
 (1.8.56 – JGroe, RLang)
1.9.62 Ultraviolet and Visible Analyzers (1.8.57 – BSalt)
1.9.63 Virtual/Inferential Analyzers (Khoo/MP, JTate)
1.9.64 Viscometers — Application and Selection (1.8.58 – JTate)
1.9.65 Viscometers — Laboratory (1.8.59)
1.9.66 Viscometers — Industrial (1.8.60 – JTate, RLang)
1.9.67 Voltametric, Amperometric, Other Electrochemical (1.8.61)
1.9.68 Water Quality Monitoring (1.8.62 – JTate, RLang)
1.9.69 Wet-Chemistry Analyzers (incl. Flow Injection Types),
 Autotitrators (1.8.63 – JTate)
1.9.70 X-Ray Analyzers

(Control Theory, DCS, PLC Equipment, Control Systems, Optimization and Final
Control Elements)
CHAPTER 1: Control Theory
2.1.1 Control Basics (2.1.1 – Acor, JH/RB)
2.1.2 Control Modes: PID Basics (2.1.2 – Acor, JH/RB)
2.1.3 Control Modes: PID Variations (2.1.3 – Acor, JH/RB)
2.1.4 Control Modes: Digital PID Controllers and Their Limitations (ACor), JH/RB
2.1.5 Control Modes: Closed Loop Response (2.1.4 – ACor, JH/RB)
2.1.6 Control: Cascade Loops (2.1.5 – Acor, JH/RB)
2.1.7 Data Validation and Reconciliation
2.1.8 Expert AI System (incl. Soft Sensors, update 2.1.6) DF
2.1.9 Feedback and Feedforward Control (2.1.8 – ACor)
2.1.10 Genetic Algorithms
2.1.11 Integrated Knowledge-Based Modeling (IKBM)
2.1.12 Interaction and Decoupling (2.1.9 - SO)
2.1.13 Model-Based Control (MBC) (2.1.10) DF
2.1.14 Model-Free Control (MFC – GCh)
2.1.15 Modeling and Simulation of Processes (2.1.11) DF
2.1.16 Multivariable (MIMO) Control Systems (OC/RRo, DF)
2.1.17 Neural Networks for Process Modeling (update 2.1.7) DF
2.1.18 Nonlinear and Adaptive Control (incl. P2ID, adaptive gain, sliding mode) (2.1.12) (OC/RRo, DF)
2.1.19 Optimizing the Control Loop, Characterizers (2.1.13)
2.1.20 Optimizing Logic, Matching Control Configuration and Tuning Settings to Process
2.1.21 Process Gains, Time Lags, Reaction Curves (2.1.14 – ACor)
2.1.22 Ratio Control (2.1.15 – ACor)
2.1.23 Relative Gain Calculations (2.1.16 – PFri)
2.1.24 Robustness, the Trade-off between Stability and Sensitivity (JGe)
2.1.25 Sampled Data Control Systems (JH/RB)
2.1.26 Selective, Override, and Limit Controls (2.1.17 – ACor)
2.1.27 Self-Tuning Controllers (2.1.18)
2.1.28 Software Documentation
Stability Analysis, Transfer Functions (2.1.19 - HE)
2.1.30 State Space Control (IVajk)
2.1.31 Statistical Process Control (2.1.20)
2.1.32 Tuning PID Controllers (2.1.21 – ACor)
2.1.33 Tuning Interacting Loops, Synchronizing Loops
2.1.34 Tuning by Computer, Procedure for Optimizing
(2.1.22) (RJS)
2.1.35 Validation of Control Systems

CHAPTER 2: Converters, Controllers and Transmitters

2.2.1 Analog versus Digital Instruments (2.2.1 – RJS)
2.2.2 Electronic versus Pneumatic Instruments (2.2.2)
2.2.3 Controllers: Electronic Analog and Digital (2.2.3)
2.2.4 Controllers: Pneumatic (2.2.4)
2.2.5 Converters (2.2.5 – LMoore)
2.2.6 Function Generators, Computing Relays (2.2.6 – RGil)
2.2.7 Telemetering Systems (2.2.7 – APaw)
2.2.8 Thermostats and Humidostats (2.2.8)
2.2.9 Transmitters: Pneumatic (2.2.11)
2.2.10 Transmitters: Electronic and Intelligent (2.2.9)
2.2.11 Transmitters: Fiber-Optic Transmission (2.2.10)
2.2.12 Transmitters: Smart, Multivariable JSch)
2.2.13 Transmitters: Self-Checking and Self-Validating

CHAPTER 3: Control Centers, Panels, Displays

2.3.1 Annunciators and Alarms (2.3.1– RB)
2.3.2 Control Centers and Panels (2.3.2)
2.3.3 Digital Readouts (2.3.3)
2.3.4 Human Engineering (2.3.4)
2.3.5 Indicators, Analog Displays (2.3.5)
2.3.6 Lights (2.3.6)
2.3.7 Recorders, Oscillographs, Loggers, Tape Recorders (2.3.7)
2.3.8 Printers, Operator Interfaces (2.7.17)
2.3.9 CRT Displays (2.7.10)
2.3.10 Speech Synthesis and Voice Recognition (2.3.8)
2.3.11 Switches, Pushbuttons, Keyboards (2.3.9)
2.3.12 Uninterruptible Power Supplies (UPS and UVS) (2.3.10)
2.3.13 Touch Screen Displays (Bkam)

CHAPTER 4: Logic Devices and PLCs
2.4.1 Binary Logic Diagrams for Process Operations (2.6.1 – Bkam)
2.4.2 Fuzzy Logic Controls (update 2.6.2 - BKam)
2.4.3 Ladder Diagrams (2.6.3 - BKam)
2.4.4 Optimization of Logic Circuits (2.6.4 BKam)
2.4.5 Relays (2.6.7)
2.4.6 Solid-State Logic Elements (2.6.8)
2.4.7 Time Delay Relays (2.6.9)
2.4.8 Timers and Programming Timers (2.6.10)
2.4.9 PLC-Programmable Logic Controllers (2.6.5)
2.4.10 PLC~Software Advances (2.6.6 – BKam)

CHAPTER 5: DCS and PC Based Systems

2.5.1 Algorithms, Languages, Programs (2.7.1)
2.5.2 Analog and Hybrid Computers, Simulation (2.7.2)
2.5.3 Early Data Acquisition Designs (MAP, TOP)
 (2.7.15 and 2.7.16)
2.5.4 I/O Hardware Costs, Features, Options (2.7.12 – HE)
2.5.5 Basic DCS Packages and Their Costs
 (2.7.7 and 2.7.8 – HHer)
2.5.6 DCS: Supervisory Tasks and Configurations (2.7.13)
2.5.7 Integration of DCS with PLCs or PCs
 (2.7.9 and 2.7.14)
2.5.8 The Early Concepts of Hierarchical Control (2.7.3)
2.5.9 Optimization of Empirical Processes (2.7.5)

CHAPTER 6: Dampers, Regulators, Variable Speed Drives

2.6.1 Dampers (2.5.1)
2.6.2 Electric Energy Modulation (2.5.2)
2.6.3 Linear and Angular Positioning of Machinery
2.6.4 Pumps as Control Elements (2.5.3)
2.6.5 Regulators: Flow (2.5.4)
2.6.6 Regulators: Level (2.5.5)
2.6.7 Regulators: Pressure (2.5.6)
2.6.8 Regulators: Temperature (2.5.7 – RGil)
2.6.9 Thermostats and Humidostats (2.2.8)
2.6.10 Variable-Speed Drives (2.5.8 – DSp, SMar)

CHAPTER 7: Control Valves, Their Selection, Sizing and Accessories

2.7.1 Accessories and Positioners (incl. Digital) (2.4.3 - FC2)
2.7.2 Actuators: Digital, Electric, Hydraulic, Solenoid (2.4.1)
2.7.3 Actuators: Pneumatic (2.4.2)
2.7.4 Newer Design Features: Improved Stem Packing,
Reduced noise, etc. (Jar)

2.7.1 Intelligent Valves, Positioners, Accessories (HB, KB, LMoore)
2.7.2 Fieldbus Interaction (HB)
2.7.3 Diagnostics and Predictive Valve Maintenance
2.7.4 Ball Valves (2.4.4)
2.7.5 Butterfly Valves (2.4.5)
2.7.6 Digital Valves (2.4.6)
2.7.7 Globe Valves (2.4.7 - FC2)
2.7.8 Pinch Valves (2.4.8)
2.7.9 Plug Valves (2.4.9)
2.7.10 Saunders Diaphragm Valves (2.4.10)
2.7.11 Sliding Gate Valves (2.4.11)
2.7.12 Special Valve Designs, (incl. Sanitary) (2.4.12 - HB)
2.7.13 Valves: Application and Selection (2.4.13 – FC², CLang, HM)
2.7.14 Valves: Capacity Testing (2.4.14 – FC²)
2.7.15 Valves: Characteristics and Rangeability (2.4.15 - FC²)
2.7.16 Valves: Noise Calculation, Prediction and Reduction (2.4.16 - FC² - HB)
2.7.17 Valves: Sizing (incl. for Viscous Services) (2.4.17 – HB, CLang, FC²)

CHAPTER 8: Process Control Systems for Various Unit Operations

2.8.1 Airhandler and Building Conditioning Controls (2.8.1)
2.8.2 Batch Control Description, Terminology and Standard S88 (2.8.2 - BJ)
2.8.3 Batch Processes and Their Automation (2.8.3)
2.8.4 Blending and Ratio Controls (2.8.4 – ACor)
2.8.5 Boiler Control and Optimization (2.8.5)
2.8.6 Centrifuge Controls (2.8.6)
2.8.7 Chiller Control and Optimization (2.8.7)
2.8.8 Compressor Controls and Optimization (2.8.8 – ACor)
2.8.9 Distillation: Basic Controls (2.8.12 - BJ)
2.8.10 Distillation: Advanced Controls (2.8.13 - BJ)
2.8.11 Distillation: Relative Gain Calculations (2.8.14 - PFri, SO)
2.8.12 Distillation: Separation Models
2.8.13 Dryer Controls (2.8.15)
2.8.14 Evaporator Controls (2.8.16 – ACor)
2.8.15 Extruder Controls (2.8.17)
2.8.19 Fan Controls (2.8.18)
2.8.20 Furnace and Reformer Controls (2.8.19 - ACor)
2.8.21 Grinding Circuit Controls
2.8.22 Heat Exchanger, Condenser, and Evaporator Controls (2.8.20 - ACor)
2.8.23 ORP Controls (2.8.21) (Rgil)
2.8.24 pH Control (2.8.22) (Rgil)
2.8.25 Power Plants, Combined Cycles and/or Cogenetation
2.8.26 Pump Controls and Optimization (2.8.23 – APaw)
2.8.27 Reactors: Control and Optimization (2.8.24)
2.8.28 Reactors: Recipe Charging and Batch Automation (2.8.25 – HHer)
2.8.29 Reactors: Simulation and Modeling (2.8.26 – Acor)
2.8.30 Robotics
2.8.31 Rolling Mill Controls (2.8.27 - BKam)
2.8.32 Satellite Based Instruments
2.8.33 Steam Turbine Controls (2.8.28)
2.8.34 Underground Gas Storage Controls (Gszecso etc.)
2.8.34 Water Treatment Controls (2.8.29 - APaw)
2.8.35 Web Cutters in Paper and Textile Industries

APPENDIX:

2.A.1 International System of Units (2.A.1)
2.A.2 Engineering Conversion Factors (2.A.2)
2.A.3 Chemical Resistance of Materials (2.A.4)
2.A.4 Composition of Metallic and Other Materials (2.A.4)
2.A.5 Steam and Water Tables (2.A.5)
2.A.6 Friction Loss in Pipes (2.A.6)
2.A.7 Tank Volumes (2.A.7)
2.A.8 Partial List of Suppliers (2.A.8)

CHAPTER 1: THE OVERALL PLANT DESIGN
CHAPTER 2: DESIGNING A SAFE PLANT
CHAPTER 3: CONTROL CENTER AND WORKSTATION PLATFORMS
CHAPTER 4: BUSES AND NETWORKS
CHAPTER 5: SOFTWARE PACKAGES

CHAPTER 1: THE OVERALL PLANT DESIGN (Symbols, Terminology, Practices and Costs)
3.1.1 Auditing Existing Plants for Upgrading (Integration of Old and New Technologies) Author: G. Kevin Totherow, President, Solution Consulting
3.1.2 Project Management and Documentation (incl. Maintenance) Author: Emmanuel Shibi, Head of I&C, Dar Al Riyadh Consultants
3.1.3 Operator Training, Commissioning and Start-up
Author: George C. Buckbee, Control Engineer, Top Control

3.1.4 Flowsheet Symbols for Digitally Implemented Control Loops (Incl. tag naming and loop descriptors)

3.1.5 Historical Data Storage and Evaluation (incl. short-term for process control trends)
Author: George C. Buckbee, Control Engineer, Top Control

3.1.6 Integration of Process Data with Maintenance Systems
Author: G. Kevin Totherow, President, Solution Consulting

3.1.7 Applications, standards and products for grounding, shielding (screening)
Author: Doug Morgan, Project Engineer, Control Systems International

3.1.8 Concepts of Hierarchical Control,
Author: Herold I. Hertanu, President HLP Associates, E: HeroldH@aol.com

3.1.9 Analog or Discrete I/O, Costs, Features and Digital Signal Processing
Author: Dr. Halit Eren, professor at Curtin University of Technology, Perth, Australia,

3.1.10 Estimating the Costs of Control System Packages
Author: George C. Buckbee, Control Engineer, Top Control

CHAPTER 2: DESIGNING A SAFE PLANT (Types of Hazards, Methods of Protection)

3.2.1 Hazardous Area Classifications and Instrument Design Options
Author: Edward M. Marszal, P.E., Principal Engineer, Exida

3.2.2 Intrinsic Safety Rules for Fieldbus Installations, Author: Jonas Berge, Engineer, Smar

3.2.3 Purging and Inerting Systems, Authors: Dr. M. Sam Mannan and Dr. Harry H. West, Professors of Chem. Eng. at Texas A&M University

3.2.4 High Integrity Pressure Protection System (HIPPS), Author: Dr. Angela Elaine Summers, President, SIS-TECH Solutions, LLC

3.2.5 Process Safety Management (PSM), Authors: Dr. M. Sam Mannan and Dr. Harry H. West, Professors of Chem. Eng. at Texas A&M University

3.2.6 Redundant or Voting Systems for Increased Reliability, Author: Ian H. Gibson, Principal Technical Specialist, Process & Control.com Systems, Fluor Australia Pty Ltd,
3.2.7 Network Security, (In-Plant levels of access, remote or out-of-plant access and passwords), Author: Michael Frank Hordeski, P.E., Consultant, Jablon Computer

3.2.8 Safety Instrumented Systems - Design, Analysis, Inspection
Author: Harry L. Cheddie, P.E., Principal Engineer, Exida

3.2.9 Reliability Engineering Concepts, Author: Harry L. Cheddie, P.E., Principal Engineer, Exida

3.2.10 Intelligent Alarm Management - IAM , Author: David A. Strobhar, P.E., President, Beville Engineering Inc. E:

3.2.11 Safety Instrumentation and the Justification of its Costs, Author: Hashem Mehrad Hashemian, President, Analysis and Measurement Corp.

3.2.12 International Safety Standards and Certification (ANSI/ISA-S84, IEC 61511/61508, ISO 1158), Author: Ian H. Gibson, Principal Technical Specialist, Process & Control Systems, Fluor Australia Pty Ltd.

CHAPTER 3: CONTROL CENTER AND WORKSTATION PLATFORMS (DCS, HMI, PLC and Hybrid Platforms)

3.3.1 Operator Interface Evolution, Author: G. Kevin Totherow, President, Solution Consulting

3.3.2 Virtual Reality Tools for Testing Control Room Concepts
Author: Bruce J. Geddes, P.E., I&C Design Consultant, Constellation Nuclear

3.3.3 Upgrading the Control Room (Integrating the Various Information Systems)
Author: Bruce J. Geddes, P.E., I&C Design Consultant, Constellation Nuclear

3.3.4 Manufacturing Platforms and Workstations (Linux, Unix, RISC, Windows NT)
Author: Robert J. Smith II, Information Technology Manager, Associated Professional Engineering Consultants

3.3.5 Workstation Hosts: Design Concepts and Classification
Author: Gurbinder Singh, Control Systems Engineer, SEWA

3.3.6 Integration of DCS, PLC, HMI and SCADA Systems (Integration of Proprietary Protocols), Author: Daniel Miklovic, Vice President and Research Director, Gartner

3.3.7 Integration with RTUs, Multiplexers, Fieldbuses and Data Highways
Author: Stuart A. Boyer, President, Iliad Engineering Inc.

3.3.8 Hybrid Systems with Discrete and Analog Capability
Author: Jonas Berge, Engineer, Smar

3.3.9 SCADA—Supervisory Control and Data Acquisition, Author: Stuart A. Boyer, President, Iliad Engineering Inc. 3.3.10 PLC Programming, Author: Vipul A. Bhavsar, Consultant, vipulabhavsar@yahoo.com

3.3.11 Fault Tolerant Programming, Real Time Operating System
Author: Gurbinder Singh, Control Systems Engineer, SEWA

3.3.12 Standard Language (IEC 1131-3) for Ladder Diagram, Function Block, Instruction List and Sequential Chart, Author: Ann Tuck, Senior Control Systems Engineer, Bechtel Corporation

CHAPTER 4: BUSES AND NETWORKS
3.4.1 An Introduction to Networks in Process Automation, Authors: Dr. Peter Graham Berrie (marketing communications) and Klaus Peter Lindner (new technology specialist) of Endress+Hauser Process Solutions AG

3.4.2 Proprietary and Open Networks, Author: Chet S. Barton, P.E., Senior Process Automation Engineer, Jacobs Engineering

3.4.2 Hardware Selection and Specification (Cable, terminations, barriers)
Author: Ian Verhappen, P.E., Engineering Associate, Syncrude Canada, Ltd.

3.4.3 Sorting Out the Protocols (OSI/RM), Signal & Data Integrity, Compression, Bandwidth, etc. Author: Wallace A. Pratt Jr., Chief Engineer, HART Communication Foundation

3.4.4 Overall Fieldbus Trends, Relative Acceptance, Author: Stefano Vitturi, Researcher, CNR-LADSEB

3.4.5 Fieldbus Advantages and Disadvantages, Interconnectivity, Economics, Options and Trends (control migrating to the field)
Author: Ian Verhappen, P.E., Engineering Associate, Syncrude Canada Ltd.

3.4.6 Fieldbus Design, Installation, Redundancy, Economics and documentation, Author: Scott C. Clark, Project Engineer, Merck & Co., Inc.

3.4.7 Instrumentation Network Design and Upgrade, Cost and Other Considerations,
Author: Dr. Miguel J. Bagajewicz, Professor, University of Oklahoma

3.4.8 Global System Architectures with Field and Control Network Layers, LANs, WANs, Author: Richard H. Caro, Vice President, ARC Advisory Group Inc.

3.4.9 The Advantages and Limitations of Open Networks
(bandwidth, indeterminism, security), Author: Richard H. Caro, Vice President, ARC Advisory Group Inc.

3.4.10 HART Networks, Author: Wallace A. Pratt Jr., Chief Engineer, HART Communication Foundation

3.4.11 Foundation Fieldbus Network (Control Programming Language, ISA SP50/IEC 61158), Author: Richard H. Caro, Vice President, ARC Advisory Group Inc.

3.4.12 Profibus-PA, Authors: Dr. Peter Graham Berrie (marketing communications) and Ludger Füchtler (marketing manager) of Endress+Hauser Process Solutions AG.

3.4.13 Field Device Installation for Foundation Fieldbus and Profibus Authors: Dr. Peter Graham Berrie (marketing communications), Ludger Füchtler (marketing manager) and Klaus H. Korsten (marketing manager) of Endress+Hauser Process Solutions AG

3.4.14 Ethernet and High-Speed Ethernet (HSE) Systems and TCP/IP Connectivity, Author: Eric J. Byres, P.E., Research Faculty, British Columbia Institute of Technology,

3.4.15 Fieldbus Networks Catering to Specific Niches of Industry Author: Stefano Vitturi, Researcher, CNR-LADSEB

3.4.16 Proprietary Buses (data highway, modbus, and genius LAN) Author: Daniel E. Capano, President, Diversified Technical Services, Inc.,

3.4.17 Fiber-optic Networks Author: Eric J. Byres, P.E., Research Faculty, British Columbia Institute of Technology,

3.4.18 Satellite, IR, Radio, Wireless LAN Networks Author: Daniel E. Capano, President, Diversified Technical Services, Inc.

CHAPTER 5: SOFTWARE PACKAGES (Operation, Diagnostics, Simulation, Optimization, Modeling)

5.1 (5.11) Optimizing Control Loops Author: John Gerry, ExperTune Inc.

5.2 Data Reconciliation Authors: Dr. Miguel J. Bagajewicz, Professor, University of Oklahoma, Dr. Derrick Keith Rollins, Sr., Associate Professor, Iowa State University

5.3 (5.6) Post Trip Review, Sequence of Event Recorders Author: Dr. Alberto Rohr, Consultant
5.4 OPC (OLE for Process Control), Allowing Individual Software Components to Interact and Share a Data Base, Author: Jonas Berge, Engineer, Smar

5.5 (5.3) Batch Software State of the Art, Author: Asish Ghosh, ARC Advisory Group,

5.6 (5.9) Plant-wide Optimization, Author: Michel Ruel, P.E., President, TOP Control USA Inc.

5.7 (5.7) Plant-wide Loop-performance Monitoring and Assessment
Authors: Dr. Karlene A. Hoo, Associate Professor at Texas Tech University and Dr. Michael J. Piovoso, Associate Professor at Penn State

5.8 (5.8) Virtual Plant, A Testing and Training Package
Author: Gregory K. McMillan, Senior Fellow, Solutia Inc.,