Development of Integrated Flexi-Burn Dual Oxidant CFB Power Plant

Horst Hack
Zhen Fan
Andrew Seltzer
Foster Wheeler North America Corp., USA

Timo Eriksson
Ossi Sippu
Arto Hotta
Foster Wheeler Energia Oy, Finland

Presented at
The 33rd International Technical Conference on Coal Utilization & Fuel Systems
Clearwater, Florida
USA
June 1 - 5, 2008
Development of Integrated Flexi-Burn Dual Oxidant CFB Power Plant

Horst Hack, Zhen Fan, Andrew Seltzer
Foster Wheeler North America Corp., USA

Timo Eriksson, Ossi Sippu, Arto Hotta
Foster Wheeler Energia Oy, Finland

(e-mail: horst_hack@fw.com)

The 33rd International Technical Conference on Coal Utilization & Fuel Systems
June 1 - 5, 2008 – Clearwater, Florida, USA

Abstract

Carbon-dioxide capture and storage (CCS) offers the potential for major reductions in carbon dioxide emissions of fossil fuel-based power generation in the fairly short term, and oxyfuel combustion is one of the identified CCS technology options. Foster Wheeler (FW) is working on reduction of carbon dioxide with its integrated Flexi-Burn dual-oxidant PC and CFB technology.

The proven high efficiency circulating fluidized-bed (CFB) technology offers a solution for carbon dioxide reduction both in re-powering and in greenfield power plants. CFB technology has the advantages of a more uniform furnace heat flux, excellent fuel flexibility and offers the opportunity to further reduce carbon dioxide emissions by co-firing coal with bio-fuels.

Development and design of an integrated Flexi-Burn dual-oxidant CFB boiler and balance of plant system was conducted in both air mode and oxyfuel mode. Through proper configuration and design, the same boiler can be switched from air mode to oxyfuel mode. The dual-oxidant CFB system incorporates features to maximize plant efficiency and power output when operating in the oxy-firing mode through firing more fuel in the same boiler.

Existing boiler design tools are being modified to incorporate the features of oxy-combustion, so that various design options can be evaluated. The 460 MWe supercritical CFB power plant (currently under construction by FW) has been used as the basis for an integrated Flexi-Burn dual-oxidant CFB study.

Introduction

Coal combustion-based power generation faces continuing environmental challenges to reduce pollutant emissions, especially more recently, carbon dioxide emissions. Oxyfuel combustion is one of the methods suggested for removing carbon dioxide from the exhaust gases of a power plant, such as a PC or a CFB boiler. Oxyfuel combustion is based on combusting carbonaceous fuel with oxygen, to produce carbon dioxide and water vapor as the main components of the exhaust gas. Thereby, the carbon dioxide can be captured relatively easily from the exhaust gas,
without having to separate it from a gas stream having nitrogen as its main component, as when combusting the fuel with air. Part of the exhaust gas needs to be recycled to the boiler for furnace temperature control, and to achieve sufficient furnace gas velocity to operate the circulating fluidized bed (CFB) with solids circulation.

Because oxyfuel combustion is still a developing technology, it is advantageous to design oxyfuel combustion boilers, where the combustion conditions are arranged to be close to those of air-firing combustion. This can be done by recycling exhaust gas back to the furnace to provide an average O_2 content of 20-28%v. Such oxyfuel combustion boilers can be built advantageously by modifying existing air-firing boilers. Due to the uncertainties related to oxyfuel combustion, such as capture and storage of carbon dioxide, there is a need for Flexi-Burn dual-oxidant boilers, i.e. boilers which can be changed from air-firing to oxyfuel combustion, preferably without any changes in the actual construction. With such a Flexi-Burn dual-oxidant boiler it is also possible to have the maximum power output by using air-firing combustion during high load demand, such as summer, weekdays and daytime, and apply oxyfuel combustion with CO_2 removal at other times. In order to generate power more economically by an oxyfuel combusting boiler system, there is a need for an improved system design and operation for minimizing the loss of produced power, and minimizing the requirement of building new power plants to compensate the power loss due to CO_2 removal (Ref 1,3&4). The Flexi-Burn dual-oxidant approach allows this option to become possible.

To enhance power generation operability and availability it may be advantageous to operate a Flexi-Burn dual-oxidant boiler in air-firing mode, when, for example, the air separation unit (ASU), CO_2 sequestration unit (CCU), or CO_2 storage system is unavailable. Due to different requirements and demands, the power generation and the steady state electrical power supply should always be readily decoupled from the upstream oxygen supply and the downstream carbon dioxide processing (Ref 4).

Combustion with oxygen differs from combustion with air mainly as a result of the different gas compositions. The fundamental change in fluegas composition affects its properties, as listed by Table 1, where both gas density (ρ) and thermal capacity (C_p) are changed. A challenge for a Flexi-Burn dual-oxidant boiler is that its heat distribution varies with gas properties and operations. At a given gas velocity, due to high gas density and thermal capacity contributed from carbon dioxide and water vapor in fluegas, more heat (about 35% more in oxy-fired mode than air-fired mode as seen from Table 1) is absorbed by the flue gas and carried to the downstream heat recovery area (HRA).

<table>
<thead>
<tr>
<th></th>
<th>ρ, lb/cft</th>
<th>C_p, btu/lb/F</th>
<th>$\rho \cdot C_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-mode</td>
<td>0.2936</td>
<td>0.2982</td>
<td>0.0876</td>
</tr>
<tr>
<td>Oxy-mode</td>
<td>0.3637</td>
<td>0.3245</td>
<td>0.1180</td>
</tr>
</tbody>
</table>

Table 1 Fluegas Properties

To obtain suitable heat flux at the furnace waterwalls, the combination of CFB boiler operating gas velocity and temperature need to be maintained at certain levels. One can maintain the correct furnace heat flux by increasing firing temperature through reduced gas mass flow by recycling less flue gas. For a greenfield case, this can be done by designing of a reduced size
boiler to keep a desired gas velocity. But a reduced boiler size approach cannot be applied as a retrofit. When firing in air-mode, both air and fuel fed to such a reduced size boiler are limited and less power would be generated, which leads to a boiler which is suitable only for oxy-firing mode after conversion. Increasing firing temperature can enhance heat flux, but it also leads to an increase of waterwall temperature, which may require tube materials to be upgraded. Given the choice of upgrading tube materials to increase gas side heat flux or to produce high steam temperatures, it is generally more economical to produce higher steam temperatures due to increased steam cycle efficiency. There is a significant amount of materials research being conducted related to increasing main steam conditions, such as to 1300 F, in order to achieve greater power generation efficiency.

Increasing power generation output is the key to minimize power derating and cost due to CO₂ removal. One can either reduce power consumption caused by (ASU+CCU) through improvements, or increase power generation output with the same boiler to reduce the power derating. It is noted that in comparison with oxy-firing, the boiler optimized for air-firing seems oversized for oxy-firing due to potentially reduced gas volume flow.

The object of the present paper is to provide an oxyfuel combusting boiler system and a method of using the boiler system so as to minimize the loss of produced power, and to minimize the modifications for the retrofit option.

Flexi-Burn Boiler Configuration

Figure 1 presents a process flow diagram (PFD) of a power plant designed for both air-fired and oxy-fired operations with the capability of Flexi-Burn dual-oxidant and operation switching. As shown in Figure 1, oxygen from the air separation unit (ASU) after preheating is mixed with recycled flue gas and fed to the boiler with solid fuel and sorbent for sulfur capture. The flue gas from boiler after passing through heat recovery area (HRA) is cooled down by a combination of re-generable air-air heat exchanger (AAHX) and low pressure economizers (Figure 1, LP-ECO-A, and LP-ECO-B). Most of the flue gas after the ESP and ID fan, in wet and hot condition without moisture condensation, is recycled and recuperated with hot flue gas in the AAHX. The heated recycled gas streams are then mixed with pre-heated oxygen to form the “primary air” and “secondary air” and fed to the boiler, where the mixing ratio can be adjusted for better performance. The balance of the flue gas is cooled down in the HRS (heat recovery system, a wet-end heat exchanger made of plastic material, where low-pressure circulated water recovers the low-grade heat from the flue gas and uses it to pre-heat combustion air in air-fired mode). Part of recycled gas, without mixing with O₂, is pressurized by HP fan as “high pressure air” and functions as seal and aeration gas for CFB operation.

The balance of the fluegas from the HRS is cooled by a direct water quenching (may be combined with post sulfur capture) before being forwarded to the CO₂ compression/purification units (CCU), where the remaining moisture in fluegas is removed to a ppm level by adsorption. This dry flue gas is purified by CO₂ condensation. Both liquid CO₂ and vent gases are flashed and used as cold sources to cool the inlet fluegas. The purified/flushed CO₂ streams are compressed to the final pressure and cooled down before discharged to the CO₂ pipeline.
In oxy-mode, the gas recirculation increases the concentration of moisture and sulfur in fluegas, which raises the acid gas dew point. To avoid acid gas condensation, the fluegas temperature to the ESP in the oxy-mode is controlled by a combination of low pressure economizers (LP-ECO-A and LP-ECO-B).

![Figure 1 Process Flow Diagram of Flexi-Burn During-Firing Power Plant](image)

Firing-More Fuel Approach

As energy is required by the air separation unit (ASU) and stored in the compressed CO₂, the CO₂ removal inherently incurs an energy penalty. In considering the specific penalty (kWh/tCO₂ and $/tCO₂) it is critical to maximize CO₂ removal since the ASU duty for oxy-combustion is fixed by the fuel input independent of the percent of CO₂ removal. The specific penalty can be reduced by minimizing the power loss and by increasing gross power output through firing more fuel. Compared with a 25% power derating without firing more fuel, Foster Wheeler has shown in simulations that the power derating can be reduced to about 10% by firing more fuel in a boiler capable of online Flexi-Burn. This low power derating is important to compensate for the power loss due to CO₂ removal by new power plants.

Because of additional heat absorbed by fluegas and carried down to the HRA in oxy-mode (Table 1), the combustion flame temperature is low as shown by a T-Q diagram (Figure 2),
where the flame temperature has been reduced from T_1 in air-mode to T_2 in oxy-mode. This shifts the heat absorbed from the furnace to the downstream HRA. The method of firing-more fuel can raise the flame and bed temperature from T_2 to T_1 and it does not increase fluegas mass flow for the increased firing. This means the line of oxy-mode in Figure 2 is shifted up because of constant F_g*C_p. This results in more heat being transferred to the fluid side. The backup of temperature and enhanced heat flux allows for generating more steam and power. The extra power generation from firing-more fuel increases net power and decreases the power derating due to CO$_2$ removal. Therefore firing-more fuel is the way to maintain the desired bed temperature and plant performance in oxy-mode. Firing-more fuel brings some advantages and margins for both system configuration and operation.

The requirement of gas velocity through the boiler is reached by selecting the right amount of fluegas recycling. Firing-more fuel can be achieved by increasing oxygen and fuel feed rates, which are independent from gas recycling. Therefore one can obtain the desired gas velocity for the CFB operation with a different firing rate for heat duty, which means that firing-more fuel for more power generation does not increase the gas flow nor the boiler size. This concept has been applied in reverse for firing-less at part load conditions, where desired gas velocity is maintained by fluegas recycling, and feed of fuel and O$_2$ is reduced in correspondence to part load demand.

Firing-more fuel not only balances the desired bed temperature, but also increases the steam generation as more energy is input into the system. Part of the increased heat input is absorbed by the fluegas itself, and the rest of extra heat is absorbed by the waterwalls through increased heat flux. In CFB operation, the heat flux can be controlled by means of solid circulation rate, which is affected by both gas velocity and gas density for given solids. As has been tested experimentally, enhanced solid circulation rate increases the heat transfer. It is noted that the fluegas itself also increases heat transfer due to its properties. This heat flux enhancement without increased bed temperature allows more steam generation in the same boiler without the upgrading of tube materials.

The fluegas heat transfer coefficient in oxy-mode is higher than that in air-mode at the same gas velocity due to fluegas properties. This also enhances heat transfer from fluegas to steam/water side in the HRA, which in turn increases steam generation. Because of the extra heat carried by the fluegas downstream in oxy-mode, the extra heat has to be absorbed by working fluid, either by increased fluid flow or by reduced fluid inlet temperature. More steam generation caused by firing-more fuel means increased feedwater flow, which allows feedwater to pick up more heat from the fluegas in the HRA. This, increases the heat recovery in the HRA when firing-more fuel.
Results

The development of this Flexi-Burn dual-oxidant with firing-more fuel approach was based on a conceptual design of a 460 MWe supercritical CFB power plant, retrofitted for oxyfuel combustion, as shown in Figure 3. Flexi-Burn dual-oxidant means that the boiler must be operable at full load in air-firing mode and in oxy-firing mode without modification when it is built.

![Figure 3 Retrofit applications by oxy-combustion](image)

For both air-firing and oxy-firing modes, the boiler is operated at a slightly higher furnace temperature than normally used for air-firing. Part of the reason for this increased temperature is due to the increased quantity of fuel fired, and another reason is to ensure that the limestone calcination temperature is exceeded in spite of the high CO₂ partial pressure in oxy-mode. Further pilot-scale experimental tests are required to validate sulfur capture models in oxy-mode. The gas velocity is similar regardless of firing mode. The oxygen level in the fluegas is controlled to be the same in both modes to ensure the right combustion performance.

In system level evaluation, the following assumptions were applied:

- O₂ purity as 96.5%v
- Air in-leakage as 1.5%v
- Fixed boiler and downstream sizes for Flexi-Burn dual-oxidant
- The same O₂%dv in fluegas for both modes
- Hot gas recycled before moisture condensation
- Recycled gas recuperated by air-air heat exchanger
- Steam extraction to ASU and CPU for chilling and regeneration
- CO₂ compressor driven by extracted steam
The Foster Wheeler in-house CFB design tools were utilized for this development work. After engineering design tuning and iterating for both air-firing and oxy-firing modes, a Flexi-Burn dual-oxidant CFB boiler is configured, designed and integrated as shown by Figure 1. It needs to be mentioned that this Flexi-Burn boiler differs in arrangement of surface area from that of the original air-firing boiler. Some modifications are required such as adding or removing tubes as compared with regular air-firing boiler design. But no modifications are required after the boiler is converted for Flexi-Burn operation.

Figure 4 shows the resultant fluegas temperature profile for both air-firing and oxy-firing operation modes. It can be seen that the bed temperature is slightly higher in oxy-mode than that in air-mode. Fluegas exhaust temperature to the ESP is increased in oxy-mode to avoid acid gas condensation. The fluegas temperature exiting the HPECO is lower in oxy-mode due to the cold inlet feedwater temperature as result of turning-off some of feedwater heaters to allow the HPECO to pickup more heat from the fluegas. Correspondently, the steam generation rate is increased by about 10%, which means that steam flow is increased to all superheat/reheat heat exchangers.

For comparison, Figure 5 shows the resultant fluegas maximum velocity at different locations from both air-firing and oxy-firing modes. As it can be seen from the Figure 5, they are almost the same as the result from present Flexi-Burn approach. It is noted that gas velocities are slightly higher in oxy-mode than in air-firing mode at most of the locations due to temperature (Figure 4), except at the AAHX, where part of fluegas split to the ECO-A is increased for a better heat recovery in oxy-firing mode.

Table 2 summarizes the power plant performance of the dual-oxidant Oxy-CFB with and without CO2 removal. Part of the extra steam, generated from firing-more fuel and saved from less steam extraction to feedwater heaters, is extracted and used to drive the CO2 compressor by auxiliary
steam turbines, which produces about 69 MW. The plant auxiliary power is increased by about 20% due to operation for firing-more fuel, such as fuel handling.

The increase in firing is 52.2/42.8=1.22, or a 22%. The power loss for CO₂ removal from (ASU+CPU) is (79+57)/1.22=111 MW (or 111/436=26% derating), and the specific power for CO₂ removal is 332 kWh/tCO₂. By firing-more fuel, the net power loss is reduced to only 43 MW or less than 10% derating as listed in Table 2. This low power derating is important in reducing building new power plants due to CO₂ removal penalties.

The O₂%v in the gas fed to boiler in oxy-mode is about 23-24%v, which is close to the 21%v from air-mode. This ensures that the difference in operation between air-mode and oxy-mode is small. The O₂ is preheated to about 120 C and mixed with recycled fluegas after recuperation (Figure 1). The O₂ content in the “primary air” and “secondary air” can be different which will be tested in future pilot plant runs.

Regardless of the amount of fluegas recycled, the net fluegas flow to the CCU plant is almost constant. The fluegas flow to the CCU will increase with increase of fuel firing. Therefore ASU, CCU, and fuel feeding capacities have to be increased. However, fluegas recirculation and associated auxiliary power remains unchanged during firing-more fuel. Flexi-Burn also means less modification to the existing boiler when conversion from air-mode to Flexi-Burn mode.

Since part of the CO₂ is vented out with impurities, the CO₂ removal is about 116.7 kg/s out of 121.3 kg/s from fuel combustion and sorbent calcination, which leads to a CO₂ removal efficiency as 96.2%. This high efficiency partly results from less air in-leakage and increased oxygen purity (96.6%). The final CO₂ stream has purity as 95.1%v and is pressurized to 139 bar (2000 psia) as a liquid or supercritical fluid.

It is been noted that the direct penalty 332 kWh/tCO₂ (ASU+CPU) operated under a 96.5% O₂ purity and 1.5% air in-leakage is almost the same as the literature data 333 kWh/tCO₂ (Ref 1) operated under 95% O₂ purity and 3.0% air in-leakage, but the present case has a better CO₂ removal efficiency of 96.2% as compared with 90.6% from Ref 1.

The cooling tower duty increases from 500 to 800 MWth or a 60% increase because of extra cooling duty from firing-more fuel, and from flue gas cooling, compressor inter-stage and post cooling. This is substantially more than the 22% increase in coal flow rate. Part of this duty increase, about 200 MWth, comes from the cooling requirement of the ASU+CCU plants. The rest comes from a reduced steam extraction to feedwater heaters as result of heat recovery from fluegas cooling. This cooling duty change from oxy-mode requires physical modification of the cooling tower.

Gas cooling is required before, during and post compression. The low-grade heat from these cooling operations may be recoverable depending upon system integration. As heat recovery shares the gas cooling, the cooling water requirement is reduced when heat recovery is applied. The number of stages of compressor affects the heat integration, where the increased compressor discharge temperature (CDT) results from less compression stages and leads to better heat recovery and more power at the generator at a cost of increased compression power. The equivalent power gain has been calculated on the basis of steam savings for the same heating
duty to water side. The degree of low-grade heat recovery may be limited by temperature difference or “pinch point”. To compensate for this, less compression stages may need to be used. In the present integration, almost all of the condensate needs to be extracted for heat recovery. Less compression stages could potentially be more optimal.

Due to application of the HRS in both oxy-mode and air-mode operation, there is no relative gain in oxy-mode from flue gas cooling before CO₂ compression, which means the efficiency difference is enlarged in comparison with the case without the HRS, due to increased efficiency by use of the HRS in air-mode. For this reason, the oxy-mode absolute efficiency may be a better measure of performance than the efficiency drop from air-mode.

It is noted that the end steam flow through steam turbine has been increased from 207 kg/s in air-fired case to 260 kg/s in oxy-fired case, which is about 26% more as compared with the 10% increase in main steam flow due to firing more fuel. More sections of low pressure steam turbine or a different size of steam turbine is required to accommodate this flow if the extra steam is not extracted to drive CO₂ compressors.

Steam driven feed water pumps have been widely applied in modern power plants, where extraction steam is taken from the IP/LP crossover or a nearby extraction point. The advantage of this approach is in that (1) it reduces the low pressure end steam flow and has a better steam turbine efficiency, and (2) it reduces all power associated with generator, transformer, motor, frequency converters, and gear loss. Based on the study for a 500 MW power plant (Ref 2), the savings from steam driven feedwater pumps could be 12% as compared with those driven by motors. About 6 MW net saving would be obtained out of 56 MW for CO₂ compression with four stages, if steam driven CO₂ compressors were applied. The corresponding end steam flow through main steam turbine would be reduced. Due to the issues of startup time requirement and upstream location of ASU, steam driven air compressors for ASU have not been included. For CO₂ compressors driven by extracted steam, this is not a problem as they are located downstream of boiler with much less startup time.

For this Flexi-Burn dual-oxidant boiler, the part load condition (32-35%) with the same steam flow rate for both air-mode and oxy-mode have been evaluated and checked for the once-through operation (Benson point). The O₂ content in the fluegas was maintained as the same at full load for both modes. At the part load, the excess O₂ rises in air-mode, but stays constant in oxy-mode because oxygen fed and gas recycled can be adjusted separately. This is based on a control concept where the desired gas velocity is maintained by manipulating fluegas recycle, and the O₂ is adjusted by the demand of fuel combustion. This low excess O₂%v at part loads saves ASU power.

Both PC and CFB technologies provide flexibility for the design and operation under oxy-fuel combustion conditions. When major reductions of CO₂ emissions are required, the oxy-fuel combustion, especially the proposed Flexi-Burn dual-oxidant with firing-more approach, appears technically feasible and cost competitive.

More oxy-mode experimental tests and large scale demonstrations measuring emissions, heat transfer, materials, and fouling are required for validation of design tools and solutions.
Conclusions

For a power plant with CO₂ removal by oxyfuel combustion, system level development and CFB boiler design for the Flexi-Burn dual-oxidant design with firing-more fuel have been performed. It has been demonstrated that the Flexi-Burn design can be achieved in a power plant capable of on-line switching between air-firing and oxy-firing modes. As result of firing-more, the plant power derating is reduced from about 25% to only about 10%, and the net power is increased from 322 to 393 MWe, which is important in reducing the need for building additional new power plants to compensate for the power derating due to CO₂ removal.

With the Flexi-Burn dual-oxidant boiler approach, the power plant can be switched to full load air-fired mode, when any trip happens related to CO₂ operations. This improves the plant availability. The Flexi-Burn boiler approach potentially leads to a solution for peak power by operating the plant in air-fired mode and for CO₂ removal in oxy-fired mode when power demand is low. By this approach, fewer new power plants will be required to compensate for the power derating due to CO₂ removal.

References