Beach Blanket Control

“PlantBerries” Won’t Control Processes Any Time Soon, but They Do Break the Link Between Many Workers and Their Control Rooms

1 of 3 < 1 | 2 | 3 View on one page

By Nancy Bartels, Managing Editor

You’ve seen those commercials for the high-end cell phones and wireless computers singing the siren song of a disconnected workplace: the tan fella in swimming trunks kicked back in a deckchair, umbrella drink in hand, enjoying the lake view, doing deals on his wireless laptop, or at the campfire at dusk with the sun setting behind the mountain, checking his email prior to a peaceful night in the wilderness.

What the ads don’t show is what happens to the laptop when he spills that umbrella drink into his keyboard; nor do they point out that at the campfire in the wilderness, the nearest cell tower is probably 200 miles away, and the reception on that expensive wonder phone is zip. Nor do the ads discuss the fate of such a phone dropped out of a canoe or down a 50-ft. ravine.

Don’t even think about what would happen to such a device on the factory floor.

So is this talk of turning popular handheld, mobile devices from the consumer world into vital factory tools just so much marketing bushwa? Not exactly. 

Lief Eriksen, director of industry solutions for Motorola ( says, “Nobody is doing control with a handheld device on a wireless network, and I would bet that won’t happen for a long time.” And few would argue with him.

That said, as wireless technology improves, reporting software becomes more sophisticated and adapted to multiple platforms, and the advantages of remote operation become clearer, disconnecting the operators and engineers from their big-screen control rooms and putting them nearer the action becomes more doable and appealing. The “PlantBerry” or some other handheld mobile devices will, and in some cases already have, become just one more item in the process engineer or operator’s toolbox.

Fantasy visions of poolside work aside, companies can get serious benefits and ROI by taking advantage of various handheld, wireless devices for gathering and reporting data around the facility. National Grid, London, the largest utility in the U.K. and the second largest in the U.S., following its acquisition of KeySpan Energy, deployed a combination of OSIsoft’s PI System and Transpara’s Visual KPI software to aggregate data from multiple, existing data sources to deliver real-time composite information to employee’s cell phones and personal digital assistants (PDA). The system, deployed in one of its state-side facilities, is role-based, delivering information to people as varied as gas turbine users, energy traders, executives in different business areas, and people in engineering, operations and environmental control.

National Grid realized ROI in less than six months and gained a 2% reduction in overtime, a 2% technician/operation productivity gain, and $5,000 to $10,000 saving per environmental incident avoided.

In another application, CSIA-certified systems integrator Data Science Automation in Pittsburgh, Pa., developed a mercury emissions sampling system to help a coal-fired power plant meet government regulatory reporting requirements. Key to the application was linking a National Instruments’ (NI) Compact FieldPoint PAC with a wireless communications interface on a PDA. The PDA provides all the status displays and operator interactions. The system saves data to the CompactFlash drive and broadcasts data over an RS 485 serial connection to a data logger. All control and programming of the PAC, as well as all user feedback, is through a wireless connection running the NI LabView PDA module. [For more details on this application, see Dan Hebert’s “Technically Speaking” column, “PACs for Communications and Data Handling.” Listen to the podcast of the column.]

Not So Fast

So maybe there’s something to talk about here, but first a little perspective. This reporting of activities and gathering data on handheld devices is only a small part of much bigger trends that have been seeping slowly through the process industries for a number of years. These are the conquest of the factory floor by PCs, the following growth of PC-based software for industrial tasks, and the growth of open communications protocols, says Robert Jackson, in product marketing at NI. 

To get a picture of where handhelds fit in this scheme, Jackson harks back to the evolution of the industrial PC (IPC), which he sees as developing in two directions. “One is handheld devices. Things have become more portable,” he says. “But that’s not where the core of the IPC market has evolved.”

That evolution took place as Windows-based PCs replaced older, proprietary systems. Following that, “the traditional PC evolved into the rugged boxed PC,” says Jackson. That rugged PC, in turn, is morphing into so many shapes that it becomes hard to tell what an IPC really is any more. [See Jim Montague’s “Industrial PCs Take New Forms for New Jobs.” ]

At the same time, the PLC has evolved into the PAC. “What happened is that we cherry-picked features we wanted from PCs—open communication protocols, such as 802.11, standard Ethernet on the factory floor connected to the PAC,” says Jackson. “The second thing that evolved was processing speed. Now PACs are seeing high-end processors being deployed. This is where industrial PCs are going—a combination of open communication, increased processing speed and high-speed I/O.”

1 of 3 < 1 | 2 | 3 View on one page
Show Comments
Hide Comments

Join the discussion

We welcome your thoughtful comments.
All comments will display your user name.

Want to participate in the discussion?

Register for free

Log in for complete access.


No one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments