A cornerstone of I/O on Demand is electronic marshalling, a new approach to an industry practice that until now has changed little over the past several decades.
Indeed, classical marshalling is at the heart of a labor-intensive, relatively inflexible work practice that also is subject to the whims of late-stage process design modifications. Changes in process design drive changes in control system inputs and outputs required, and proceed to cascade through all that detailed engineering workâfrom reworking drawings to control system partitioning to building new cabinets. Late design changes are inevitable, but they add cost, time, and most important, risk to any project. The practice of wired marshalling only intensifies these problems.
But what if the nature of any single I/O channel could be changed at will, at any time during a project? What if a new pair of wires needed only a place to land and could be digitally bound to any controller in the system? What if all marshalling cabinets and junction boxes were of a "standard" design and need not be engineered beyond knowing an approximate total I/O count?
Electronic marshalling does all these things. As a result, it effectively removes I/O from the critical path of many projectsâdecoupling process design from I/O architecture decisions, as well as eliminating the rework costs and project delays that were once the inevitable consequence of late-stage design modifications.
"The new I/O on Demand capability of Emerson's DeltaV S-series allows users to add or change I/O types whenever they make project design changes, no matter where the I/O is located," notes Larry O'Brien, analyst for the ARC Advisory Group. "This reduces project costs and, even more important, reduces time to startup."
Out with the Old
In the typical project of today, field home run wires are landed on the right-hand terminal strips in the marshalling cabinet shown in Figure 1. The terminal blocks then must be cross-marshalled to the appropriate I/O card and controller on the left-hand side of the diagram, resulting in a rat's nest of wiring that is both difficult to manage and difficult to modify.