San Bruno pipeline failure was control system cyber incident per NTSB prelim report
Oct. 13, 2010
It is now clear from the NTSB Preliminary Report the San Bruno gasoline pipeline failure that killed 8 people was a control system cyber incident. Enclosed is the relevant description from the NTSB preliminary report.
It is now clear from the NTSB Preliminary Report the San Bruno gasoline pipeline failure that killed 8 people was a control system cyber incident. Enclosed is the relevant description from the NTSB preliminary report. “Just before the accident, PG&E was working on their uninterruptable power supply (UPS) system at Milpitas Terminal, which is located about 39.33 miles southeast of the accident site. During the course of this work, the power supply from the UPS system to the supervisory control and data acquisition (SCADA) system malfunctioned so that instead of supplying a predetermined output of 24 volts of direct current (VDC), the UPS system supplied approximately 7 VDC or less to the SCADA system. Because of this anomaly, the electronic signal to the regulating valve for Line 132 was lost. The loss of the electrical signal resulted in the regulating valve moving from partially open to the full open position as designed. The pressure then increased to 386 psig. The over-protection valve, which was pneumatically activated and did not require electronic input, maintained the pressure at 386 psig. At about 5:45 p.m., the SCADA system indicated that the pressure at Martin Station, which is downstream of the rupture location, exceeded 375 psig. The SCADA system indicated that the pressure at Martin Station continued to increase until it reached about 390 psig at about 6:00 p.m. At 6:08 p.m., it dropped to 386 psig. At 6:11 p.m., the pressure at Martin Station decreased from 386 to 361.4 psig; within one minute the pressure dropped to 289.9 psig.”
Carbon dioxide is increasingly recognized as a vital resource with significant economic potential. While the conversion of carbon dioxide into products is still in its infancy...
Discover our wide range of temperature transmitters that convert sensor signals from RTDs and thermocouples into stable and standardized output signals!
An innovative amine absorption-based carbon capture process enables retrofitting of existing industrial facilities to reduce emissions in hard-to-abate sectors, with advanced ...