Fans and pumps are key targets for efficiency improvements.
Energy efficiency is often embraced as a way to save resources and save money. It could be thought of as a “first fuel.” Energy efficiency savings throughout the system are realized by a decrease in energy or fuel at the system input. An important aspect of motor-control systems or AC drives is the power consumption required to perform a given task. Energy has an assigned cost and reduction in energy use or increased efficiency can result in operational savings.
Though traditional return on investment analysis may evaluate these systems, other approaches such as total cost of operation (TCO) looks at expenses across the life of the system including energy, downtime, maintenance and repair, wear and replacement and disposal costs. There are often technological low-hanging fruit, such as the installation of AC drives, but purchase decisions still warrant a cost benefit analysis that factors total life cycle costs. All relevant factors should be evaluated including negative collateral effects that stack up against advantages.
When discussing efficiency, it is important to remember that a drive should be used to optimize the performance of a motor. Any drive can control the speed of a motor, but not all drives can get the best efficiency out of a motor.
For higher efficiency the focus should be on advanced drive control. By accessing key operating parameters, such as maximum torque per ampere, advanced drive controls reduce power consumption and improve performance of the system.
- Hardware features built into the drive (such as DC chokes) result in a more efficient system. This built-in functionality also reduces costs and eliminates the installation space required for external components.
- Intelligent heat management is another target of system-level optimization. Features such as back-channel cooling and availability of liquid-cooled drives result in significantly reduced heat loads in switchrooms. This enables the use of small air conditioning systems to optimize space requirements, improve efficiency and drive down costs.
It is important to distinguish between motor, controllers and drives. A motor is the mechanical or electrical device that generates the rotational or linear force used to power a machine. It converts electrical energy to mechanical energy. There are mainly three types of electric motor:
- DC motors are historically the first type of widely used motor. System (motor and drive) initial costs tend to be less.
- AC synchronous: The rotation of the rotor is synchronized with the frequency of the supply current and is ideal for driving equipment at a constant speed and for use in high precision positioning.
- AC induction (asynchronous): The most common type of AC motor in industry, which uses electromagnetic induction to generate torque.