By
Greg McMillan, CONTROL columnistIN THE OLD days, we used small and large valves with the idea that the small valve would extend the rangeability of the manipulated flow for low loads. The valves were split ranged with the split range point set at the classical value of 50%. The split range was typically done in the positioner. Of course, the big valve tended to get stuck in the seat where the friction was highest, especially if the valve was designed for tight shutoff or the plug stayed in the seat for long periods of time.
As a result, some ingenious engineers devised a scheme in which a pressure switch tripped and energized solenoid valves. This froze or closed the small valve, and preloaded a pressure to the big valve to get it off of its seat, so it could take over throttling the flow for high loads. These valves looked like a Christmas tree with the extra solenoids, switch, and tubing, but the instrument technician wasnt in the holiday spirit when maintenance was required. Getting everything right in the middle of the night, when a valve needed to be replaced to keep the plant running, was difficult. The failure rate was higher than a simple valve, which was not so bad considering the pneumatic positioner and pressure switch were out of calibration anyway after about six months operating in the plant. Since there was no readback of actual valve position in the control room, various creative explanations were offered for the increasingly pesky oscillations as the calibration and settings shifted. Then there were the persistent entertaining questions of split ranged gap and overlap.
Early improvements
In the last decade, users got smarter, and installed digital positioners that would hold their calibrations. The split ranging in the field was now accurate, but configuration engineers preferred the maintainability, visibility, and flexibility of the standard splitter block on the controller output. A split range point other than 50% was readily implemented, and the actual valve positions were displayed for the operator. The split range point was set to compensate for the different valve sizes and gains. For example, if the big valve was about 10 times larger than the small valve, the small and big valves stroked from 0 to 10% and 10 to 100% controller output, respectively. Signal characterization blocks were added to linearize the installed characteristic of each control valve. Tricky configuration engineers devised and implemented valve-switching strategies that better addressed the transition at the split range point.
BIG VALVES, LITTLE VALVES |