The ABCs of Controller Tuning

July 12, 2012
All of the major tuning methods end up with the same expressions for PID gain, reset time, and rate time when the tuning objective is maximum disturbance rejection. Differences come down to tweaking of the a, b, and c coefficients. Furthermore the use of external-reset feedback (dynamic reset limit), and options such as a setpoint filter, setpoint rate limit, and an enhanced PID for wireless eliminate the need to retune for different objectives.

All of the major tuning methods end up with the same expressions for PID gain, reset time, and rate time when the tuning objective is maximum disturbance rejection. Differences come down to tweaking of the a, b, and c coefficients. Furthermore the use of external-reset feedback (dynamic reset limit), and options such as a setpoint filter, setpoint rate limit, and an enhanced PID for wireless eliminate the need to retune for different objectives.

The ISA Automation Week 2012 paper “Effective Use of PID Features” discusses how diverse process objectives such as minimizing interaction and overshoot and maximizing coordination, equipment protection, production rate, and process efficiency can be met by the use of PID features without having to retune the PID. Furthermore, these features enable expressions for tuning to be simplified.

The major discrepancies between the methods predominantly used in the chemical industry up to the 1990s, the newer Lambda tuning method developed in the pulp and paper industry, and the Internal Model Control (IMC) tuning method popular in universities have been resolved. The same gain expression can be achieved by setting the closed loop time constant (Lambda) equal to the loop deadtime. The same expression for reset time can be attained by treating the loop as a near-integrator and setting the closed loop arrest time (Lambda) equal to the loop deadtime. Finally, the same expression for rate time can be obtained by using the Lambda or IMC tuning rules for integrating processes and realizing that the secondary process time constant in processes where derivative is used is about half of the deadtime (e.g. mixing and thermal lags are about half of the total deadtime).

The controller gain expression depends upon whether the process is self-regulating or integrating. The two expressions can be equated by realizing the integrating process gain for a near-integrator is the self-regulating process open loop gain divided by the open loop time constant.

For deadtime dominant processes the b coefficient is reduced towards 0.5 and the c coefficient is reduced towards 0.0 as the total loop deadtime becomes increasingly larger than the open loop time constant. Expressions have been developed to compute b as a function of the degree of deadtime dominance. People tend to simply set c to zero because the improvement is so marginal from derivative action.

In the next blog we will discuss more of the tuning aspects for deadtime dominant processes. In the meantime have fun with the a, b, and c coefficients for tuning an ISA standard form PID. Just remember to use the dynamic reset limit to prevent the PID output from changing faster than a secondary loop or final control element can respond.

Kc = a * [to / ( Koo )] (self–regulating)                                                                      
Kc = a * [1 / (  Kio )] (integrating)
Ti  = b *θo                       
Td  = c *θo

where:
a = controller gain coefficient (e.g. 0.4)
b = controller reset time coefficient (e.g. 3)
c = controller rate time coefficient (e.g. 0.5)
Kc = controller gain (dimensionless)
Ki = integrating process gain (%/sec/%)
Ko = self-regulating process open loop gain (%/%)
Ti = integral reset time (sec)
Td = derivative rate time (sec)
to = self-regulating process open loop time constant (sec)
θo = total loop time deadtime (sec)

About the Author

Greg McMillan | Columnist

Greg K. McMillan captures the wisdom of talented leaders in process control and adds his perspective based on more than 50 years of experience, cartoons by Ted Williams and Top 10 lists.

Sponsored Recommendations

IEC 62443 4-1 Cyber Certification – Why ML 3 is So Important

The IEC 62443 Security for Industrial Automation and Control Systems - Part 4-1: Secure Product Development Lifecycle Requirements help increase resilience for control systems...

Multi-Server SCADA Maintenance Made Easy

See how the intuitive VTScada Services Page ensures your multi-server SCADA application remains operational and resilient, even when performing regular server maintenance.

Your Industrial Historical Database Should be Designed for SCADA

VTScada's Chief Software Architect discusses how VTScada's purpose-built SCADA historian has created a paradigm shift in industry expectations for industrial redundancy and performance...

Linux and SCADA – What You May Not Have Considered

There’s a lot to keep in mind when considering the Linux® Operating System for critical SCADA systems. See how the Linux security model compares to Windows® and Mac OS®.