"It's a skill like anything else." David Strobhar of Beville Engineering stressed the importance of practice in helping operators make better decisions.Modularizing those procedures instead could help companies tailor procedures to an individual operator instead of a unit, mixing and matching procedures that occur across several units. "If you could modularize them, you could tag them with certain attributes," Strobhar explained. "Then you could recombine them to create procedures for an individual."
Through an algorithm that converts procedures to text files, Purao and his group are able to build a set of heuristics that are parsed into a table, finding the key steps that tend to occur together, and creating a single task module from them.
One thing that came out from this research was the ability to identify gaps in procedures; certain steps that were missing key elements. The research also can help find opportunities are for procedural automation.
With Louisiana State University's Craig Harvey, the center has also researched the ideal alarm frequency within an operating system. As Strobhar notes, the oft-quoted number of 10 alarms in a 10-minute period seems reasonable, but why that particular number?
The group ran university students through a series of controlled experimentsāwith rates of one, two, five, 10 and 20 alarms per 10-minute periodāto see how operator response time would measure up. "For one, two, five and 10 alarms in 10 minutes, performance was flat," Strobhar said. "But at 20 in 10 minutes, you see the alarms starting to queue up."
The first study ran the experiments in 10-minute bursts, so researchers then wanted to see how the numbers would be affected in one-hour time spans. In this case, they looked at 15, 20, 25 and 30 alarms per 10 minutes. Although there was a slight increase across the timeframes, it wasn't until 30 per 10 minutes that alarms started really queuing up more.
They also wanted to see if it made a difference whether the experiment subjects were students or professional operators. At a rate of 10 alarms per 10 minutes, the operators performed just a little better. But at a rate of 20 alarms for the same time period, the operators were twice as fast as the students. "That shows there's an experience effect," Strobhar noted. "You're not going to see a performance difference until stress comes up. That's when experience is really going to show."
The conclusion was that 10 alarms in 10 minutes is in fact a very conservative number. "A lot of companies are beating themselves over their heads trying to reach that number," Strobhar said, noting that with better operators, better displays and other positive factors, that number could be more like 20-25 alarms per 10 minutes.
Of course, everyone wants to know the best way to make a "better operator." In a study with Klein Associates, the center looked into whether the researchers could adapt the military's decision making exercises (DMX) to process plants. What they found was that it could be done easily with very short training sessionsāone hour on occasion at the start of a shift, for example.
"You need to practice making decisions," Strobhar emphasized. "It's a skill like anything else." Through relatively simple, low-cost training sessions, companies have been able to keep their operators' skills honed, identify knowledge gaps and lost practices, and help build mental models.